

УДК 624.044 Антаков А.Б. – кандидат технических наук, доцент E-mail: <u>antakof@mail.ru</u> Антаков И.А. – ассистент E-mail: <u>igor788@bk.ru</u> Казанский государственный архитектурно-строительный университет Адрес организации: 420043, Россия, г. Казань, ул. Зелёная, д. 1

Анализ методик расчета изгибаемых элементов, армированных полимеркомпозитной арматурой, по второй группе предельных состояний

Аннотация

В статье рассмотрены методики расчета изгибаемых элементов, армированных полимеркомпозитной арматурой, представленных в нормативных документах: США – ACI 440.1R-06 и России – СП 63.13330.2012. Выполнено сопоставление теоретических и экспериментальных данных по прогибам и ширине раскрытия трещин при кратковременном приложении нагрузок. В исследовании рассматривались опытные образцы балок, армированные стержнями стеклопластиковой и базальтопластиковой арматуры.

Ключевые слова: неметаллическая арматура, полимеркомпозитная арматура, изгибаемые элементы, деформативность, прогиб, ширина раскрытия трещин.

Актуальность исследования деформационных свойств изгибаемых элементов с полимеркомпозитной арматурой (далее АКП) связана с существенными отличиями свойств композитов от стали: относительно низкий модуль упругости и прямолинейная форма диаграммы «напряжения-деформации». Разнообразные экспериментальные исследования [5-10] показали предсказуемые особенности работы элементов с композитной арматурой под нагрузкой: повышенная деформативность, преимущественно линейная зависимость «изгибающий момент – прогиб» после образования трещин. Прогибы изгибаемых элементов с АКП в 3-4 раза выше, чем у железобетонных аналогов. Однако к моменту разрушения образцов разница снижается до 40 %, что связано с достижением напряжений в стальной арматуре предела текучести [10]. В связи с этим требования второй группы предельных состояний, предъявляемые к конструкциям, могут стать основным барьером для использования композитов в качестве армирования достоверность теоретической бетонных элементов. Таким образом. оценки деформационных свойств конструкций является важным и актуальным вопросом. На данный момент вопросы, связанные с расчетом конструкций по 2 группе предельных состояний по методике СП 63.13330.2012, являются недостаточно изученными [4].

Представленные исследования выполнены в рамках диссертационной работы, направленной на изучение изгибаемых элементов с АКП. Подробное описание этапов исследования изложено в ранее опубликованных работах [1-3]. В данной статье приводятся результаты сопоставления теоретических данных по прогибам и ширине раскрытия трещин, исследуемых опытных образцов-балок, с экспериментальными. Целью является оценка достоверности методик расчета, представленных в нормативных документах СП 63.13330.2012 и АСІ 440.1R-06, а также разработка рекомендаций к выполнению расчетов по второй группе предельных состояний.

Обе методики расчета базируются на существующих подходах для железобетонных конструкций. В методике СП, адаптированной для применения композитов, введен ряд изменений:

- сжатая арматура в расчетах не учитывается;

- предельные величины ширины раскрытия трещин увеличены до 0,7 мм и 0,5 мм;

- увеличены значения коэффициента φ₂, учитывающего профиль продольной АКП, до 0,7 для арматуры периодического профиля и 1,2 – для гладкой.

По данным ACI приведенный момент инерции сечения I_e определяется по уравнению:

$$I_e = \beta_d \cdot I_g \cdot \left(\frac{M_{cr}}{M_{max}}\right)^3 + I_{cr} \cdot \left[1 - \left(\frac{M_{cr}}{M_{max}}\right)^3\right] \le I_g,$$

где введен коэффициент β_d :

$$\beta_d = \frac{1}{5} \left(\frac{\rho_f}{\rho_{fb}} \right).$$

Данное выражение получено эмпирически в результате сопоставления с экспериментальными данными.

По методике ACI 318-05 для железобетонных элементов прогибы от действия длительных нагрузок вычисляются путем умножения значения кратковременного прогиба на коэффициент λ, учитывающий длительность действия нагрузки:

$$\lambda = \frac{\xi}{1 + 50\rho'}.$$

Для элементов, армированных АКП, по методике ACI 440.1R-06 принимают аналогичный подход, но коэффициент армирования в сжатой зоне ρ' считается равным нулю, так как композитная арматура мало эффективна при сжатии, а коэффициент ξ уменьшен на 40 %. Соответственно λ вычисляется следующим образом:

$$\lambda = 0, 6 \cdot \xi.$$

Коэффициент ξ зависит от длительности действия нагрузки, при продолжительности действия более 5 лет ξ =2, до 6 месяцев – 1,25.

Максимальная ширина раскрытия трещин определяется по формуле:

$$w = 2\frac{f_f}{E_f}\beta k_b \sqrt{d_c^2 + \left(\frac{s}{2}\right)^2}.$$

В выражение введен коэффициент k_b , учитывающий степень сцепления между АКП и окружающим бетоном. Сцепление композитной арматуры с бетоном может существенно отличаться от сцепления стальной арматуры. Поэтому для стержней АКП имеющих сцепление с бетоном аналогичное стальным стержням коэффициент k_b принимается равным 1. Если величина сцепления АКП с бетоном ниже, чем у стальных стержней k_b принимается больше 1,0, если выше – меньше 1,0.

На рис. 1 представлена принципиальная схема испытания исследуемых балок. Опытными образцами являлись бетонные балки сечением 120х220 мм и длиной 1810 мм, армированные двумя стержнями в растянутой зоне.

Рис. 1. Схема опирания и нагружения исследуемых балок

В табл. 1 представлены характеристики опытных балок рассматриваемых серий.

Таблица 1

Характеристики серий опытных образцов балок

№ серии	Размеры балки, мм	Класс бетона	Армирование	Процент армирования µ, %		
2			2 Ø10 ACK	0,484		
	Сечение 120х220, пролет 1700	B40	2 Ø8 ACK	0,321		
			2 Ø6 ACK	0,164		
3		B35	2 Ø7 АБК	0,321		
	Сечение 120х220, пролет 1700		2 Ø5 АБК	0,184		
			2 Ø4 АБК	0,105		

Примечание: АСК – арматура стеклокомпозитная ТУ 5769-248-35354501-2007; АБК – арматура базальтокомпозитная ТУ 2296-001-60722703-2013.

Серии 2 и 3 содержат образцы, армированные стержнями АСК и АБК. Испытание опытных образцов балок производилось при кратковременном приложении нагрузок.

На рис. 2-7 представлены экспериментальные и теоретические зависимости между величинами изгибающего момента и прогибами для исследуемых опытных образцов. Для двух рассматриваемых методик определены по две диаграммы. В методике СП коэффициент ψ_f , учитывающий неравномерное распределение относительных деформаций растянутой арматуры между трещинами, принимался равным 1 и $\psi_f = 1 - 0.8 \cdot \frac{M_{crc}}{M}$. Согласно СП ψ_f допускается принимать равным 1,0 когда соблюдается условие $f \leq f_{ult}$ и $a_{crc} \leq a_{crc,ult}$. По методике ACI данные определялись при коэффициенте ξ равном 1, что соответствует кратковременному действию нагрузки, и 2 – продолжительность действия нагрузки более 5 лет.

Рис. 3. Экспериментальные и теоретические зависимости «М-f» для балок с двумя стержнями АСК диаметром 8 мм

Рис. 4. Экспериментальные и теоретические зависимости «М-f» для балок с двумя стержнями АСК диаметром 10 мм

Рис. 5. Экспериментальные и теоретические зависимости «М-f» для балок с двумя стержнями АБК диаметром 4 мм

Рис. 6. Экспериментальные и теоретические зависимости «М-f» для балок с двумя стержнями АБК диаметром 5 мм

Рис. 7. Экспериментальные и теоретические зависимости «М-f» для балок с двумя стержнями АБК диаметром 7 мм

Работа балок с композитной арматурой под нагрузкой характеризуется преимущественно линейной зависимостью M-f после образования трещин вплоть до разрушения. Диаграммы рассматриваемых методикам после предполагаемого образования трещин также прямолинейны. В диаграммах по методике СП с $\psi_{j}=1$ в точке образования трещин диаграмма имеет горизонтальный участок, что является переходом между расчетами прогибов элемента без трещин и с учетом трещин.

Наиболее близкими результатами к экспериментальным данным обладает методика ACI при $\xi=2$, отклонение от опытных данных составляет до 42 %. По методике CП более точными результатами обладают результаты с $\psi_f = 1 - 0.8 \cdot \frac{M_{crc}}{M}$, отклонения до 53 %. С увеличением нагрузки и соответственно прогибов отклонения теоретических данных от экспериментальных увеличиваются. Однако учитывая, что при расчете конструкций по 2 группе предельных состояний предъявляется требование $f \leq f_u$, то есть расчетный прогиб не должен превышать предельно допустимого значения, наиболее ответственным участком диаграммы для исследования является прогибы до предельного значения.

В табл. 2 и рис. 8-9 произведено сопоставление теоретических и экспериментальных значений изгибающих моментов и ширины раскрытия трещин при прогибе балок соответствующем предельно допустимому значению – (1/200)l_o.

Таблица 2

Ме серии	Маркировка балок	Изгибающий момент М и ширина раскрытия трещин а _{стс} при прогибе балок f=8,55 мм (1 ₀ /200)									
		СП 63.13330.2012				ACI 440.1R-06					
		ψ _f =1		$\psi_f = 1 - 0.8 \cdot \frac{M_{crc}}{M}$		ξ=1		ξ=2		Эксперимент	
		М, кН∙м	а _{стс} , MM	М, кН∙м	а _{стс} , мм	М, кН∙м	а _{стс} , MM	М, кН∙м	а _{стс} , мм	М, кН·м	а _{стс} , MM
2	Бк-10сп	5,318	1,12	7,263	1,08	10,698	0,93	7,039	0,6	5,89	0,5
	Бк-8сп	3,663	0,94	5,639	0,89	8,3	1,08	5,875	0,76	5,576	0,8
	Бк-бсп	-	-	3,99	0,65	5,98	1,5	4,572	1,14	3,88	1,1
3	Бк-7бп	3,527	0,93	5,355	0,89	7,939	1,06	5,589	0,75	4,5	0,5
	Бк-5бп	-	-	4,012	0,69	6,011	1,36	4,524	1,03	3,755	1,1
	Бк-4бп	-	-	3,158	0,53	4,763	1,88	3,743	1,48	3,15	1,35

Сопоставление величин изгибающего момента и ширины раскрытия трещин при прогибе балок [f]=(1/200)l_o

Рис. 8. Сопоставление отношений экспериментальных и теоретических величин изгибающих моментов

Рис. 9. Сопоставление отношений экспериментальных и теоретических величин ширины раскрытия трещин

Данные изгибающих моментов и ширины раскрытия трещин для образцов балок с армированием двумя диаметрами 6 мм АСК, двумя диаметрами 5 мм АБК и двумя диаметрами 4 мм АБК отсутствуют. Это вызвано тем, что при расчете до предполагаемого образования трещин прогибы не достигают (1/200)l_o, а после образования трещин прогибы певышают данную величину.

Отклонение теоретических значений от экспериментальных изгибающих моментов, вычисленных по методике СП при $\psi_f = 1 - 0.8 \cdot \frac{M_{crc}}{M}$, составила до 23,31 %, при $\psi_f = 1 -$ до 34,31 %. По методике ACI при ξ =1 – до 81,63 %, ξ =2 – до 24,2 %.

Теоретические результаты ширины раскрытия трещин, при двух вариантах определения изгибающего момента по методике СП, показали недостоверные результаты. Разница с экспериментальными данными составила до 124 %. По методике ACI при ξ=1 – до 112 %, ξ=2 – до 50 %.

Основные выводы:

- расчет по деформациям рекомендуется выполнять по методике СП 63.13330.2012 при коэффициенте ψ_f равным $\psi_f = 1 - 0.8 \cdot \frac{M_{crc}}{M}$ и методике ACI 440.1R-06 при коэффициенте ξ равным 2;

- для определения ширины раскрытия трещин рекомендуется использовать методику ACI 440.1R-06 при коэффициенте ξ=2;

- полученные данные свидетельствуют о необходимости совершенствования методики СП 63.13330.2012 в части расчетов конструкций по 2 группе предельных состояний.

Список библиографических ссылок

- 1. Антаков А.Б., Антаков И.А. Анализ нормативных подходов к оценке прочности нормальных сечений изгибаемых элементов, армированных полимеркомпозитной арматурой // Известия КГАСУ, 2014, № 1 (27). С. 75-80.
- 2. Антаков А.Б., Антаков И.А. Экспериментальные исследования изгибаемых элементов с полимеркомпозитной арматурой // Известия КГАСУ, 2014, № 3 (29). С. 7-13.
- Антаков А.Б., Антаков И.А., Гиздатуллин А.Р. Экспериментальные исследования изгибаемых элементов с предварительно напряженной полимеркомпозитной арматурой // Новое в архитектуре, проектировании строительных конструкций и реконструкции: материалы VIII Всероссийской (II Международной) конференции НАСКР-2014. – Чебоксары, 2014. – С. 69-75.
- 4. Перельмутер М.А., Попок К.В., Скорук Л.Н. Расчет ширины раскрытия нормальных трещин по СП 63.13330.2012 // Бетон и железобетон, 2014, № 1. С. 21-22.
- 5. Климов Ю.А., Солдатченко А.Д., Витковский Ю.А. Экспериментальные исследования композитной арматуры на основе базальтового и стеклянного ровинга для армирования бетонных конструкций // Бетон и железобетон, 2012, № 2 (7). С. 106-109.
- 6. Al-Sunna R., Pilakoutas K., Hajirasouliha I., Guadagnini M. Деформационные свойства бетонных балок и плит, армированных АКП: экспериментальное исследование // Композиты Часть В: Строительство, 2012, № 43 (5). 23 с.
- 7. Barris C., Torres L., Comas J., Mias C. Трещинообразование и деформации балок армированных АСК: экспериментальное исследование // Композиты Часть В, 2013, № 55. С. 580-590.
- 8. El-Gamal S., AbdulRahman B., Benmokrane B. Деформационные свойства бетонных балок с различными типами стержней АСК // СІСЕ 2010. 5-я Международная конференция о АКП композитах в области гражданского строительства. 27-29 сентября, 2010. Пекин, Китай.
- 9. Pawłowskia D., Szumigałaa M. Поведение полномасштабных бетонных балок, армированных АБК, при изгибе экспериментальные и численные исследования //

Материалы 7-ой научно-технической конференции Проблемы в области гражданского строительства (MATBUD'2015). Procedia Engineering 108, 2015. – С. 518-525.

 Urbanski M., Garbacz A., Lapko A. Исследование бетонных балок, армированных базальтовыми стержнями, в качестве эффективной альтернативы традиционных железобетонных конструкций // Материалы 11-й Международной конференции по вопросам современных строительных материалов, конструкций и технологий. Procedia Engineering 57, 2013. – С. 1183-1191.

Antakov A.B. – candidate of technical sciences, associate professor E-mail: <u>antakof@mail.ru</u> Antakov I.A. – assistant E-mail: <u>igor788@bk.ru</u> Kazan State University of Architecture and Engineering The organization address: 420043, Russia, Kazan, Zelenaya st., 1

Analysis of calculation methods of flexural members, reinforced with polymer fiber bars, according to the second group of limit states

Resume

The article presents the results of theoretical and experimental studies of deformability of flexural members with fiber-reinforced polymer (FRP) reinforcement. The study used fiberglass and basalt FRP rebar. The tests were performed at short duration of load application. The study considered calculation methods of guidelines: US – ACI 440.1R-06 and Russia – SP 63.13330.2012. Theoretical data deflections and width of cracks were compared with experimental data.

In considered methods parameters varied: in SP 63.13330.2012 factor ψ f, taking into account the uneven distribution of the relative strain of tensile reinforcement between the cracks; in ACI 440.1 R-06 factor ξ , taking into account the duration of load action. Most similar results to the experimental data has the method of ACI 440.1R-06 at factor ξ equal to 2.

Based on the results of the analysis of the obtained results developed a series of recommendations: calculation of the strains recommended by the method of SP at factor ψf accepted equal to $\psi_f = 1 - 0.8 \cdot \frac{M_{crc}}{M}$ And the ACI method at factor ξ equal to 2. The data obtained indicate the need for improvement the calculation of serviceability limit states of SP 63.13330.2012 method.

Keywords: non-metallic fitting, fiber-reinforced polymer bars, reinforced concrete, flexural members, deformability, deflection, crack width.

Reference list

- 1. Antakov A.B., Antakov I.A. Analysis of normative approaches to strength assessment of the normal section bending members with fiber-reinforced polymer reinforcement // Izvestiya KGASU, 2014, № 1 (27). P. 75-80.
- 2. Antakov A.B., Antakov I.A. Experimental study of flexural members with FRP reinforcement // Izvestiya KGASU, 2014, № 3 (29). P. 7-13.
- 3. Antakov A.B., Antakov I.A., Gizdatullin A.R. Experimental study of flexural members with FRP prestressed reinforcement // International conference on new architecture, design construction and renovation NASKR, 2014. Cheboksary, 2014. P. 69-75.
- 4. Perelmuter M.A., Popok K.V., Skoruk L.N. Calculation of the normal opening width of the cracks on the SP 63.13330.2012 // Concrete and reinforced concrete, 2014, № 1. P. 21-22.

- 5. Klimov Y.A., Soldatchenko A.D., Witkowski J.A. Experimental study of composite reinforcement on the basis of basalt and glass roving for reinforcement of concrete structures // Concrete and reinforced concrete, 2012, № 2 (7). P. 106-109.
- Al-Sunna R., Pilakoutas K., Hajirasouliha I., Guadagnini M. The deflection behavior of FRP reinforced concrete beams and slabs: An experimental investigation // Composites Part B: Engineering, 43 (5), 2012. – 23 p.
- 7. Barris C., Torres L., Comas J., Mias C. Cracking and deflections in GFRP RC beams: an experimental study // Composites: Part B, 55, 2013. P. 580-590.
- 8. El-Gamal S., AbdulRahman B., Benmokrane B. The deflection behaviour of concrete beams reinforced with different types of GFRP Bars // CICE 2010 The 5th International conference on FRP composites in civil engineering. September 27-29, 2010, Beijing, China.
- Pawłowskia D., Szumigałaa M. Flexural behaviour of full-scale basalt FRP RC beams experimental and numerical studies // Proceedings of the 7th Scientific-technical conference Problems in civil engineering (MATBUD'2015). Procedia Engineering 108, 2015. – P. 518-525.
- Urbanski M., Garbacz A., Lapko A. Investigation of concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures // Proceedings of the 11th International conference on Modern building materials, structures and techniques. Procedia Engineering 57, 2013. – P. 1183-1191.