

СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

УДК 691.32

Минаков Ю.А. – доктор технических наук, профессор

E-mail: ksmts@marstu.net

Краснов А.М. – кандидат технических наук, доцент

Кононова О.В. – кандидат технических наук, доцент

Черепов В.Д. – аспирант

Солдатова Е.А. – аспирант

Марийский государственный технический университет

ИССЛЕДОВАНИЕ СВОЙСТВ БЕТОНОВ НА ОСНОВЕ ОСАДОЧНЫХ ПОРОД

АННОТАЦИЯ

Получены бетоны с улучшенными техническими свойствами за счет модифицирования и рационального регулирования зернового состава заполнителей из осадочных пород.

Предложено корректировать зерновой состав мелкого и среднего песка введением отсевов дробления карбонатных пород фракции 1,25-5 мм. Изучено влияние рецептурнотехнологических факторов на формирование прочности, морозостойкости и водостойкости тяжелого бетона на карбонатном щебне.

Внедрение результатов исследования будет способствовать решению проблемы рационального использования минеральных ресурсов.

КЛЮЧЕВЫЕ СЛОВА: бетон, мелкозернистый бетон, отсевы дробления карбонатных пород, зерновой состав, химическая модификация, прочность, морозостойкость, водостойкость.

Minakov Y.A. - doctor of technical sciences, professor

Krasnov A.M. – candidate of technical sciences, associate professor

Kononova O.V. – candidate of technical sciences, associate professor

Cherepov V.D. – post-graduate student

Soldatova E.A. – post-graduate student

Mari State Technical University

STUDY ON PROPERTIES OF CONCRETE BASED ON SEDIMENTARY ROCKS

ABSTRACT

Concrete with the improved technical properties at the expense of sedimentary rocks fillers grain structure modifying and rational regulation developed.

It is offered to correct the fine-grained sand structure by introducing of 1,25-5 mm crushed carbonate rock fraction screenings. The influence of composition and technological factors on crushed-stone screenings based concrete durability, frost and water resistance formation studied.

Implementation of the research results will contribute to solving the problem of rational use of mineral resources.

KEYWORDS: concrete, fine-grained concrete, crushed carbonate rock screenings, grain structure, chemical modification, durability, frost resistance, water resistance.

Рациональное использование местных сырьевых ресурсов в строительстве является одной из актуальных задач [1, 2, 3]. Отсутствие высокопрочного крупного заполнителя для производства бетонов характерно для многих регионов России. Применение привозного крупного заполнителя приводит к значительному удорожанию бетонов. В то же время широко распространены месторождения осадочных карбонатных пород и кварцевых средних и мелкозернистых песков. Исследования показывают, что применение этой сырьевой базы при традиционном подходе не позволяет получать качественный конструкционный бетон [5, 6].

Проведены исследования по оценке возможности улучшения технических свойств бетонов методом корректировки их зернового состава при комплексном использовании местных осадочных пород.

Исследована возможность повышения физико-механических свойств мелкозернистого бетона за счет улучшения зернового состава песка введением отсевов дробления карбонатных пород Коркатовского карьера Республики Марий Эл (РМЭ). В качестве вяжущего применялся бездобавочный портландцемент Ульяновского цементного завода с удельной поверхностью $350 \text{ m}^2/\text{kr}$, который имел следующий минералогический состав: $C_3S = 59 \text{ %}$, $C_2S = 16 \text{ %}$, $C_3A = 8 \text{ %}$, $C_4AF=13 \text{ %}$. В качестве мелкого заполнителя применялся песок Студенковского карьера РМЭ. Зерновой состав природного песка приведен в табл. 1.

Таблица 1 Зерновой состав природного кварцевого песка Студенковского карьера РМЭ

Наименование		(Остатки на си	тах с размеро	ом отверстий	Í, MM	
остатков	5	2,5	1,25	0,63	0,315	0,14	Менее 0,14
Частный, %	0	2,05	6,60	24,25	35,35	27,40	4,35
Полный, A_i %	0	2,05	8,65	32,9	68,25	95,65	100

Исследования зернового состава местного кварцевого песка Студенковского карьера показали, что по модулю крупности это средний песок, близкий к мелкому ($M_{\rm кp}$ = 2,07), с пониженным содержанием частиц крупностью 1,25-5,0 мм. Соответственно, для улучшения зернового состава из отсевов дробления карбонатных пород использовались фракции с размером зерен 1,25-5,0 мм. Корректировка зернового состава проведена в соответствии с рекомендациями по требованиям к непрерывному зерновому составу [6]. В результате было установлено, что близкий к непрерывному зерновой состав заполнителя может быть получен при совмещении 42 % отсевов дробления карбонатных пород фракций 1,25-5,0 мм и 58 % применяемого природного кварцевого песка. В табл. 2 приведен расчет состава песка, обогащенного отсевами дробления карбонатных пород.

Расчет состава обогашенного песка

Таблица 2

Фракция, мм	Частные остатки, %		зернового		Сумма частных остатков, %	Сумма полных остатков, %	Сумма полных проходов, %	Рекомендуемый размер зерен, мм, мельче	
	Отсевов	Песка	Отсевов	Песка					
5	0,00	0,00	0	0	0	0	100	80-100	80-100
2,5	57,00	2,05	23,94	1,19	25,13	25,13	74,87	65-82	60-93
1,25	43,00	6,60	18,06	3,83	21,89	47,02	52,98	45-65	45-85
0,63	0	24,25	0	14,07	14,07	61,09	38,91	30-50	30-75
0,315	0	35,35	0	20,50	20,50	81,59	18,41	20-36	20-55
0,14	0	27,40	0	15,89	15,89	97,48	2,52	15-25	25-33
0,071	0	4,35	0	2,52	2,52	100,00	0,00	8-16	10-16

Анализ полных остатков обогащенного песка показал, что его модуль крупности повысился до 3,12. Таким образом, по модулю крупности, согласно ГОСТ 8736-93, песок из группы средних (близкий к границе с мелким) благодаря обогащению попадает в группу повышенной крупности.

Для оценки эффективности обогащения природного песка отсевами дробления карбонатных пород в соответствии с планом эксперимента, приведенным в табл. 3, приготавливались смеси мелкозернистого бетона состава 1: 3 и 1: 4.

План эксперимента

Таблица 3

No	Подготовка заполнителя	Соотно Цемент / За	
состава		1/4	1/3
1	Песок без обогащения с $M_{\text{кp}}$ = 2,07 (контрольный состав)	+	+
2	Песок с $M_{\kappa p}=3,12$, обогащенный отсевами дробления карбонатных пород	+	+

Из равноподвижных смесей были заформованы образцы – кубы размером 70,7×70,7 мм, которые уплотнялись в течение 40 с на виброплощадке с частотой колебаний 50 Гц и амплитудой 0,35 мм. Равноподвижность смесей проверялась на встряхивающем столике типа ЛВС по аналогии с методикой ГОСТ 310.4-81 после 15 встряхиваний. Водоцементное отношение подбиралось так, чтобы расплыв смесей находился в пределах 115-120 мм. Прочность при сжатии контролировалась через 28 суток хранения в нормальных условиях. В табл. 4 приведены результаты испытаний.

Таблица 4 Влияние обогащения природного песка отсевами дробления карбонатных пород на свойства мелкозернистого бетона

No		Соотношение Цемент / Заполнитель					
	Подготорие заполниталя		1:4	1:3			
состава	Подготовка заполнителя	В/Ц	R _{сж} , МПа	В/Ц	R _{сж} , МПа		
1	Песок без обогащения с $M_{\kappa p}$ = 2,07 (контрольный состав)	0,60	25,1	0,50	26,9		
2	Песок с $M_{\text{кp}}$ = 3,12, обогащенный отсевами дробления карбонатных пород (ОДКП)	0,59	28,5	0,49	33,3		

Анализ результатов, приведенных в табл. 4, показывает, что обогащение песка отсевами дробления карбонатных пород при соблюдении принципа равноподвижности смесей снижает водоцементное отношение и способствует приросту прочности при сжатии в среднем на 15-20 %.

Другими факторами, которые могут быть использованы для дальнейшего повышения качества мелкозернистого бетона, как показали исследования, выполненные ранее, являются использование химических модификаторов и более интенсивных технологических приемов уплотнения мелкозернистых бетонных смесей. В данной серии опытов уплотнение равноподвижных смесей, включая контрольный состав, выполнялось вибрированием с пригрузом 0,005 МПа, при частоте колебаний 50 Гц. В качестве физико-химического модификатора применялся суперпластификатор поликарбоксилатного типа Glenium[®]51 фирмы BASF в количестве 0,3 % от массы цемента [7]. Из мелкозернистых бетонных смесей формовались образцы — балочки размером 40х40х160 мм, которые до испытания также твердели 28 суток в нормальных условиях. Результаты испытания образцов приведены в табл. 5.

Таблица 5 Влияние обогащения природного песка отсевами дробления карбонатных пород в присутствии суперпластификатора Glenium-51[®] на свойства мелкозернистого бетона

Glenium-			Соотношение Цемент / Заполнитель						
$N_{\underline{0}}$	51 [®] , %	Подготовка		1:4			1:3		
состава	от массы	заполнителя	В/Ц	R _{cж} ,	R _{изг} ,	В/Ц	R _{сж} ,	R _{изг} ,	
	цемента		υ/ц	МПа	МΠа	υ/ц	МΠа	МПа	
1	0	Песок без обогащения, (контрольный состав)	0,64	21,6	5,5	0,52	23,3	7,2	
2	0,3	Песок обогащенный ОДКП, $M_{\kappa p}$ =3,12	0,58	31,5	6,3	0,48	36,1	8,2	

Пробные испытания показали, что при увеличении содержания воды в бетонной смеси в присутствии суперпластификатора поликарбоксилатного типа происходит качественное резкое изменение консистенции смеси от жесткой к литой. Задача исследования потребовала определения граничного значения В/Ц, при котором совершается переход смеси в область литой консистенции. Расплыв смесей при испытании на встряхивающем столике ЛВС после 15 встряхиваний поддерживался на уровне 120-130 мм.

 составил 45,8 %. Соответственно, для составов с соотношением Ц: $\Pi = 1:3$ прочность при сжатии возросла на 54,9 %. При этом прочность при изгибе возросла в среднем на 14 %.

Применение карбонатного щебня местных карьеров Республики Марий Эл в производстве бетонов ограничено в силу низкой прочности, неоднородности и пониженной водостойкости карбонатных пород. Принято решение при разработке составов ограничить его содержание в бетоне с целью повышения водостойкости бетонов. Изучено влияние содержания карбонатного щебня в пределах от 0,9 до 0,7 м³ на 1 м³ бетона на предел прочности при сжатии и водостойкость бетона. Зерновой состав щебня был также подобран с учетом технических требований к зерновому составу крупного заполнителя и с учетом более полного использования продукта дробления карбонатной породы и характеризовался наличием двух фракций: 5-10 мм и 10-20 мм в процентном соотношении по массе 40:60.

Результаты исследования бетонов, приготовленных из равноподвижных смесей жесткостью 20 с, приведены в табл. 6.

Таблица 6 Влияние состава бетона на карбонатном щебне на прочность при сжатии и водостойкость

No	Pa	сходы мате	ериалов на 1	м ³ бетона		Средний предел прочности при сжатии образцов, МПа		Коэффи- циент
состава	Цемент, кг	Ще л	бень, кг	Песок, кг	Вода, л	в сухом состоянии	в насы- щенном состоянии	водо- стой- кости
1	450	0,9	1000	700	225	45,33	45,30	1,00
2	450	0,7	780	920	235	44,47	44,40	1,00
3	250	0,9	1000	900	210	24,01	23,76	0,99
4	250	0,7	780	1105	220	23,31	23,17	0,99
5	450	0,8	890	810	230	43,88	43,60	0,99
6	250	0,8	890	1010	215	25,51	24,98	0,98
7	350	0,9	1000	810	210	38,56	37,90	0,98
8	350	0,7	780	1010	220	37,65	36,90	0,98
9	350	0,8	890	910	215	38,03	37,98	1,00

Приведенные в табл. 6 результаты исследования показали, что бетон на карбонатном щебне Коркатовского карьера РМЭ при использовании щебня в количестве 0,9-0,7 м 3 на 1 м 3 бетона водостоек и позволяет получать конструкционные бетоны классов B15-B30.

Выполнены исследования, направленные на повышение морозостойкости бетона на карбонатном щебне за счет применения гидрофобно-пластифицирующего модификатора СДО. При постоянным расходе цемента 350 кг/м³ изучено влияние содержания карбонатного щебня и модифицирующей добавки СДО на формирование пористости, водопоглощения и морозостойкости бетона. Добавка СДО 50 %-ной концентрации вводилась с водой затворения. Ее содержание варьировалось от 0 до 0,06 % от массы цемента. Содержание щебня по объему варьировалось в пределах от 0,7 до 0,9 м³. Из равноподвижных бетонных смесей жесткостью 20 с на виброплощадке с частотой колебаний 50 Гц и амплитудой 0,35 мм формовались образцы – кубы размером 100х100х100 мм. Результаты эксперимента приведены в табл. 7.

Результаты влияния физико-химического модификатора СДО на водопотребность равноподвижных смесей показали, что введение 0,03 % добавки СДО от массы цемента снижает водопотребность бетона в среднем на 15 %. Дальнейшее увеличение количества вводимой добавки до 0,06 % от массы цемента приводит к дополнительному снижению требуемого объема воды затворения не более, чем на 5 %.

Морозостойкость бетона определялась ускоренным методом по структурномеханическим характеристикам в соответствии с ГОСТ 10060.4-95 «Бетоны. Структурномеханический метод ускоренного определения морозостойкости» [8].

Предел прочности Расходы материалов на 1 м³ бетона Капиллярнопри сжатии, МПа No открытая в насыщенпористость, состава Цемент, Щебень, СДО, заморо-Песок, Вода, ном состо-% ΚГ ΚГ Л Л женные янии 810 54,59 13,94 350 1000 180 0,42 32,81 350 1000 810 200 29,95 52,54 14,43 0 350 780 1010 185 0,42 30,36 13,43 3 52,26 4 350 780 1010 220 28,78 52,17 14,50 0 5 350 1000 810 195 0,21 35,56 52,24 14,36 6 350 780 1010 185 0,21 31,80 52,48 14,08 7 910 59,42 14,21 350 890 165 0,42 38,11 8 910 350 890 210 35,03 62,28 0 14,80 350 890 910 180 0,21 35,43 51,81 14,17

Таблица 7 Влияние добавки СДО в составе бетона на карбонатном щебне на морозостойкость

Результаты, приведенные в табл. 7, показывают, что присутствие добавки СДО понижает водопоглощение и капиллярно-открытую пористость бетона. Модификатор СДО способствует снижению коэффициента повышения прочности при замораживании, что согласуется с результатами определения водопоглощения и капиллярно-открытой пористости.

Сводный расчет морозостойкости М исследуемых составов бетона приведен в табл. 8.

Таблица 8 Влияние содержания карбонатного щебня и модификатора СДО на морозостойкость бетона

№ состава	1		Морозостойкость, циклов по ГОСТ 10060.4		повы	оициент шения ности Г 10060.4	Результаты испытания на морозостойкость	
	Щебень м ³	СДО, % Ц	M_{min}	M_{max}	K _{max}	K_{\min}	K _i	М, циклов
1	0,9	0,06	74,4	231	1,976	1,158	1,66	135
2	0,9	0	66,6	224,4	1,988	1,160	1,75	112
3	0,7	0,06	81,6	236	1,956	1,150	1,72	127
4	0,7	0	65	223	1,990	1,160	1,81	99
5	0,9	0,03	66,6	224,4	1,988	1,160	1,47	165
6	0,7	0,03	71,4	228,6	1,982	1,160	1,65	135
7	0,8	0,06	61,4	221,2	2,014	1,160	1,56	146
8	0,8	0	69,8	227,2	1,984	1,160	1,78	108
9	0,8	0,03	69,8	227,2	1,984	1,160	1,46	163

Анализ результатов исследований морозостойкости бетона, приведенных в табл. 8 и на рисунке, показал, что оптимальное содержание модификатора СДО 0.03~% от массы цемента при содержании щебня 0.8-0.9~% повышает морозостойкость бетона от F100~до F150.

выводы

- 1. Исследования показали, что комплексное применение местных осадочных пород может способствовать получению качественных бетонов. Так, выявлены условия эффективного применения карбонатных пород Коркатовского карьера РМЭ: щебня фракции 5-20 мм в качестве крупного заполнителя, отсевов дробления фракции 1,25-5 мм в качестве продукта обогащения природного кварцевого песка Студенковского карьера РМЭ в мелкозернистом бетоне и отсевов дробления фракции менее 1,25 мм в качестве карбонатного наполнителя в тяжелом бетоне.
- 2. Для бетона на местном карбонатном щебне фракций 5-20 мм следует рекомендовать пределы варьирования содержания щебня по комплексу исследованных свойств морозостойкости,

водопоглощения, капиллярно-открытой пористости и водостойкости от 0.8 до 0.9 м 3 на 1 м 3 бетона и применение физико-химического модификатора СДО в количестве 0.03 % от массы цемента.

3. Исследования подтверждают целесообразность использования в комплексе обогащения песка отсевов дробления карбонатных пород фракций 1,25-5,0 мм до получения непрерывного зернового состава и применения физико-химического модификатора – поликарбоксилатного суперпластификатора Glenium®51 для повышения прочности мелкозернистого бетона при сжатии и изгибе.

Расход карбонатного щебня, м³ на 1 м³ бетона

Рис. Формирование морозостойкости бетона при постоянном расходе цемента 350 кг/м³ в зависимости от расхода карбонатного щебня и содержания добавки СДО, % от массы цемента: а) контрольный состав без добавки; б) СДО – 0,03; в) СДО – 0,06

СПИСОК ЛИТЕРАТУРЫ

- 1. Калашников В.И. Промышленность нерудных строительных материалов и будущее бетонов // Строительные материалы, 2008, № 3. С. 23-25.
- 2. Кононова О.В., Черепов В.Д., Солдатова Е.А. О комплексном использовании местных сырьевых ресурсов // Программа. Тезисы докладов 62-й Респ. конф. по пробл. арх-ры и стрва. Казань: КГАСУ, 2010. 144 с.
- 3. Лазуткин А.В., Эирих В.И., Жуков В.П. Использование отсевов дробления важный фактор экономического роста предприятий нерудной промышленности // Строительные материалы, 2003, № 11.-C.6-7.
- 4. Шелихов Н.С., Рахимов Р.З. Комплексное использование карбонатного сырья для производства строительных материалов // Строительные материалы, 2006, № 9. С. 42-44.
- 5. Салихов М.Г., Кононова О.В., Вайнштейн В.М. К вопросу о комплексном использовании карбонатных пород в производстве бетонов // Композиционные строительные материалы. Теория и практика: сб науч. тр. междунар. науч.-практ. конф. Пенза, 2002. С. 301-303.
- 6. ГОСТ 9128-97 Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия: Введ. 1999.01.01. М.: Госстандарт России, Изд-во стандартов, 1997. 24 с.
- 7. Добавки в бетон: Технический каталог; ноябрь, 2009. М.: «BUSF Construction Chemicals», 2009. 136 с.
- 8. ГОСТ 10060.4-95 Бетоны. Методы определения морозостойкости. Введ. 1996-09-01. М.: Госстандарт России. 72 с.

REFERENCES

- 1. Kalashnikov V.I. Article about the nonmetallic minerals industry and the future of concrete // Building materials, 2008, № 3. P. 23-25.
- 2. Kononova O.V., Cherepov V.D., Soldatova E.A. Article about multipurpose use of local raw material resources // Scientific conference abstracts of the 62nd republic conference of architectural and construction problems. Kazan: KSUAE, 2010. 144 p.
- 3. Lazutkin A.V. Using of screening dust is important factor of economic advance of nonmetallic minerals industry // Building materials, 2003, № 11. P. 6-7.
- 4. Shelikhov N.S., Rakhmov R.Z. The complex using of carbonate raw material for building materials production // Building materials, 2006, N_{2} 9. P. 42-44.
- 5. SalikhovM.G., Kononova V.V., Vainshtein V.M. To the question of carbonate raw material complex using in concrete production // Composite building materials. Theory and practice: collection of scientific papers of international research-to-practice conference. Penza, 2002. P. 301-303.
- 6. Federal standard 9128-97 Bitumen concrete mix for roads, airdromes and asphalt-concrete. Technical standards: activated 1999.01.01. Moscow: Government standard of Russia, 1997. 24 p.
- 7. Concrete addition: technical catalog; November, 2009. Moscow «BUSF Construction Chemicals», 2009. 136 p.
- 8. Federal standard 10060.4-95 Concrete. Definition methods of freeze-thaw resistance. Activated 1996-09-01. M.: Government standard of Russia, 1997. 72 p.