УДК 536.253 Посохин В.Н. – доктор технических наук, профессор E-mail: <u>posohin@kgasu.ru</u> Зиганшин А.М. – кандидат технических наук, доцент E-mail: <u>amziganshin@kgasu.ru</u> Горохова А.Ю. – студент E-mail: <u>alealen-94@mail.ru</u> Казанский государственный архитектурно-строительный университет

Адрес организации: 420043, Россия, г. Казань, ул. Зеленая, д. 1

О естественной конвекции над горизонтальными теплоисточниками

Аннотация

Численным методом исследуется конвекция над горизонтальным протяженным теплоисточником заделанным заподлицо с окружающей поверхностью. Исследование проводится с использованием различных вариантов замыкания системы уравнений турбулентного движения, а также при помощи ламинарной модели. Находятся значения критических высот, разделяющих зоны ламинарного и турбулентного режимов, в зависимости от значения числа Рэлея (Ra) определяемого по характеристикам источника. Определяются осевые параметры – скорость, избыточная температура.

Ключевые слова: естественная конвекция, плоский теплоисточник, режимы течения, критическое значение числа Рэлея, модели турбулентности.

Схемы конвективных струйных течений вблизи вертикальной и горизонтальной пластин показаны на рис. 1. Вначале струя ламинарна, затем следует зона переходного режима течения и далее зона развитого турбулентного течения.

Рис. 1. Схемы конвективных течений:

а) пристенная струя у вертикальной пластины; б) свободная струя над горизонтальной пластиной

Закономерности естественной конвекции у теплоисточников (интенсивность теплоотдачи, распределение температур и скорости, протяженность характерных зон течений) определяются значением числа Рэлея:

$$Ra = A \frac{DTl^3}{T^3},$$
 (1)

где $\Delta T = T_{\Pi} - T_{\infty}$ – разность температур поверхности теплоисточника и окружающего воздуха, К; или $\Delta T = T_x - T_{\infty}$ – разность температур на оси струи в сечении *x* и окружающего воздуха, К; *l* – характерный размер, м, в качестве которого можно принять размер горизонтального теплоисточника *b* или координату *x*. *T* – определяющая

температура, К; обычно принимают $T = (T_{\Pi} + T_{\infty})/2$; A – размерный коэффициент, включающий в себя физические константы и характеристики воздуха. При атмосферном давлении P = 101325 Па и $T_{\infty} = 293$ К, $A \approx 2 \cdot 10^{15} \text{ K}^2/\text{m}^3$.

Учитывая сказанное выше, мы можем сформировать число Рэлея в некотором произвольном сечении струи в виде:

$$\mathbf{R}\mathbf{a}_x = \mathbf{R}\mathbf{a}_0 + \Delta \mathbf{R}\mathbf{a}_x,\tag{2}$$

где

$$Ra_{0} = 2 \times 10^{15} \frac{(T_{\Pi} - T_{\star})b^{3}}{T^{3}},$$
(3)

$$DRa_{x} = 2 \times 10^{15} \frac{(T_{x} - T_{y})x^{3}}{T^{3}}$$
 (4)

Число Ra_0 есть отношение сил гравитации и сил вязкости в области прилегающей непосредственно к горизонтальному теплоисточнику; добавка ΔRa_x характеризует изменение числа Рэлея по высоте струи. Для вертикальной пластины, очевидно, $Ra_0 = 0$.

Запишем еще выражение (1) в виде:

$$\overline{\operatorname{Ra}}_{x} = \frac{\operatorname{Ra}_{x}}{\operatorname{Ra}_{0}} = 1 + \overline{\operatorname{DT}}_{x} \overline{x}^{3},$$
(5)

где

$$\overline{\mathsf{D}T}_x = \frac{T_x - T_{\mathtt{F}}}{T_{\Pi} - T_{\mathtt{F}}}, \ \overline{x} = \frac{x}{b}.$$

Сведения о влиянии числа Ra₀, приводимые в известных руководствах по теплообмену, касаются, в основном, интенсивности теплоотдачи на поверхности горизонтально расположенного теплоисточника [1-6].

Данные о влиянии Ra₀ на распределение скорости и температуры, протяженность зон ламинарного и переходного режимов, пороговые значения числа Ra_x, разделяющих эти режимы для течений над горизонтальными теплоисточниками практически отсутствуют.

Далее будем рассматривать струйное течение над горизонтальным протяженным теплоисточником – пластиной шириной 2*b*, заделанной заподлицо в ограничивающую поверхность.

Система уравнений двумерного ламинарного движения, дополненная уравнением газового состояния, лучистого теплообмена и граничными условиями, решалась численно с помощью пакета программ *Fluent*. На части границы моделирующей теплоисточник, в качестве граничного условия принималось равномерное распределение теплового потока Q_0 (Вт/м), оставшаяся часть нижней горизонтальной границы – адиабатическая стенка, а остальные границы – проницаемы для потоков воздуха и тепла.

В ходе численного эксперимента характерный размер теплоисточника оставался неизменным – 2b = 0,01 м, изменялся тепловой поток Q_0 и значение числа Ra_0 , которое находилось в пределах $8 \cdot 10^2 \div 10^4$. Такие значения Ra_0 согласно рекомендациям [1-6] соответствуют ламинарному режиму теплоотдачи. Ниже в табл. приведены условия численного эксперимента для четырех характерных случаев. Здесь введены обозначения: Q_{κ} – конвективная мощность теплоисточника, BT/M;

$$u_{\rm M} = \sqrt[3]{\frac{g \times Q_{\kappa}}{c_p \times T_{\star}}} \approx 0.03 \times Q_{\kappa}^{1/3}$$
 – скорость течения, м/с, принятая за масштаб;

g – ускорение свободного падения, м/с²;

 c_p – удельная теплоемкость воздуха Дж/кг·К;

 ρ_{∞} – плотность воздуха окружающего струю, кг/м³).

<i>Q</i> ₀ , Вт/м	Q_{κ} , Вт/м	<i>Т</i> _{ст} , К	<i>и</i> _м , м/с	Ra ₀
100	37,4	577,1	0,1	$9,8 \cdot 10^3$
20	11,1	386,8	0,067	$6,8 \cdot 10^3$
10	5,9	346,4	0,054	$4,6 \cdot 10^3$
1	0,56	300,5	0,025	$8,0.10^{2}$

Таблица

В процессе вычислений находились распределения продольной скорости u_x , избыточной температуры ΔT_x и соответствующие значения Ra_x .

На рис. 2 показаны результаты вычислений относительных осевой скорости $\overline{u_x} = u_x/u_{\text{м}}$, осевой избыточной температуры $D\overline{T_x} = DT_x/DT_{\Pi}$ и числа Рэлея $\overline{\text{Ra}}_x$.

Рис. 2. Изменение относительных характеристик по высоте струи: *а* – осевая скорость, *б* – осевая избыточная температура, *в* – текущее число Рэлея

Точками показаны кривые построенные по формулам И.А. Шепелева [8]: - осевая скорость:

$$u_x^3 = \frac{g \times Q_x}{c_p \times p_{\sharp} \times T_{\sharp}} \times f_1 \underbrace{\operatorname{arc}}_{\mathbf{c}b} \overset{\mathbf{o}}{\mathbf{b}};$$
(6)

где

$$f_1 \mathop{\mathbf{c}}_{\mathbf{a}} \overset{\mathbf{o}}{\mathbf{b}} \overset{\mathbf{o}}{\overset{\mathbf{o}}{\mathbf{b}}} = \sqrt{\frac{1 + \Pr_{\mathbf{x}}}{\Pr_{\mathbf{x}}}} \mathop{\mathbf{e}}_{\mathbf{a}} \overset{\mathbf{f}}{\sqrt{\pi c}} \frac{\sqrt{2} \times cx}{\sqrt{3} \times b} \times erf \mathop{\mathbf{c}}_{\mathbf{a}} \overset{\mathbf{c}}{\sqrt{3} \times b} \overset{\mathbf{o}}{\overset{\mathbf{i}}{\mathbf{b}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}{\mathbf{b}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf{i}}{\overset{\mathbf{i}}}} \overset{\mathbf$$

- осевая избыточная температура:

$$DT_x^3 = \frac{T_{\downarrow}}{c_p^2 \times p_{\downarrow}^2 \times g} \times \frac{Q_x^2}{b^3} f_2 \underbrace{gas}_{b} \ddot{o};$$
(7)

где

$$f_{2} \mathop{\mathbf{c}}_{\mathbf{c}}^{\mathbf{a}\mathbf{x}} \overset{\mathbf{o}}{\mathbf{b}} \overset{\mathbf{a}}{=} = \frac{1}{8 \times f_{1} \mathop{\mathbf{c}}_{\mathbf{c}}^{\mathbf{a}\mathbf{x}} \overset{\mathbf{o}}{\mathbf{b}} \overset{\mathbf{o}}{\mathbf{c}}} \mathop{\mathbf{c}}_{\mathbf{c}}^{\mathbf{c}\mathbf{c}} f_{\mathbf{c}}^{\mathbf{c}\mathbf{c}} \underbrace{\mathbf{c}}_{\mathbf{c}}^{\mathbf{c}\mathbf{c}\mathbf{c}\mathbf{r}} \overset{\mathbf{c}\mathbf{c}}{\mathbf{c}} \overset{\mathbf{o}\mathbf{c}\mathbf{c}}{\sqrt{2} \times cx} \overset{\mathbf{c}\mathbf{u}}{\overset{\mathbf{c}\mathbf{u}}{\mathbf{c}}};$$

Рг_ж − турбулентное число Прандтля (согласно рекомендациям [7] принято равным 0,85); *с* − экспериментальная константа, рекомендуемое значение которой − 0,082.

Во всех исследованных случаях осевая скорость плавно возрастает с высотой. При некотором значении $x = x_{\text{кр}}$ возникают возмущения, которые далее нарастают, течение становится неустойчивым. Можно предположить, что такие возмущения соответствуют началу переходного режима, который затем переходит в развитый турбулентный. На этом же рисунке показано как изменяется текущее значение числа Рэлея $\overline{\text{Ra}}_x$.

Здесь неустойчивость возникает на большей высоте. Объяснение этому факту состоит видимо в том, что $\overline{\text{Ra}}_x$ зависит только от избыточной температуры – формула (5). Из рис. 2 видно, что кинематическая неустойчивость течения наступает заметно раньше, чем начинаются колебания температуры, поэтому и колебания $\overline{\text{Ra}}_x$ начинаются на большей высоте.

На рис. З показаны связи между критической высотой \overline{x}_{kp} и значением числа Ra₀, определенные по показателям неустойчивости характеристик \overline{u}_x и Ra_x (DT_x).

Рис. 3. Изменение $\overline{x}_{\rm кр}$

В обоих случаях зависимость эта близка к линейной: - по показателю кинематической неустойчивости: $\overline{x}_{kv} = -0,0062 \times Ra_0 + 99$,

- по показателю температурной неустойчивости:

 $\overline{x}_{\kappa p} = -0,0073 \times Ra_0 + 115$.

Приведем еще результаты расчета осевой скорости в струе, полученные при решении системы уравнений турбулентного движения. Для замыкания системы уравнений использовались три модификации *k*-є модели турбулентности – «стандартная» (SKE), «реализуемая» (RKE) и «ренормализованных групп» (RNGKE), и две модификации модели Рейнольдсовых напряжений устанавливающих связь между корреляциями давления и напряжений – линейной (RSM LPS) и квадратичной (RSM QPS). Результаты вычислений при $Ra_0 = 7,8\cdot10^3$ приведены на рис. 4, из которого видно, что использование RSM моделей приводит к существенному несоответствию с аппробированной формулой (6).

Рис. 4. Сравнение результатов численного расчета с использованием различных моделей замыкания системы уравнений турбулентного движения

Расчеты, проведенные при разных значениях числа Рэлея ($4 \cdot 10^2 < \text{Ra}_0 < 1 \cdot 10^{11}$) показали, что скорость в струе возрастает с увеличением Ra₀, однако зависимость эта не

так существенна. В практических расчетах можно воспользоваться формулой (6), в которой параметр Ra₀ отсутствует и которая довольно хорошо соответствует результатам численных расчетов по *k*-є моделям. Заметим, что формула (6) хорошо соответствует результатам с использованием ламинарной модели при $\overline{x} < 10$, далее расхождение становится все заметнее. При использовании турбулентных моделей все наоборот – формула (6) довольно сильно расходится с численным решением при $\overline{x} < 30$, после – результаты аналитического и численного решений практически совпадают.

Список библиографических ссылок

- 1. Батурин В.В., Эльтерман В.М. Аэрация промышленных зданий. 2-е изд., испр. и доп. М.: Госстройиздат, 1963. 317 с.
- 2. Кутателадзе С.С. Теплопередача и гидродинамическое сопротивление: Справочное пособие. М.: Энергоатомиздат, 1990. 367 с.
- Попов И.А. Гидродинамика и теплообмен внешних и внутренних свободноконвективных вертикальных течений с интенсификацией. Интенсификация теплообмена: монография / Под общ. ред. Ю.Ф. Гортышова. – Казань: Центр инновационных технологий, 2007. – 326 с.
- 4. Martynenko O.G., Khramtsov P.P. Free-Convective Heat Transfer // Free. Heat Transf. With Many Photogr. Flows Heat Exch. Berlin/Heidelberg: Springer-Verlag, 2005. 516 p.
- 5. Corcione M. Heat transfer correlations for free convection from upward-facing horizontal rectangular surfaces // WSEAS Trans. Heat Mass Transf., 2007, Vol. 2, № 3. P. 48-60.
- 6. Уонг X. Основные формулы и данные по теплообмену для инженеров / Справочник. М.: Атомиздат, 1979. 216 с.
- ANSYS FLUENT 6.3 Documentation / 12.3.8 Convective Heat and Mass Transfer Modeling. URL: <u>https://www.sharcnet.ca/Software/Fluent6/html/ug/node476.htm</u> (дата обращения: 27.02.2016).
- 8. Романов С.В., Посохин В.Н., Зиганшин А.М. О влиянии способа подвода тепла на результаты численного решения задачи о свободной конвекции над объёмным теплоисточником // Известия высших учебных заведений. Проблемы энергетики, 2013, № 3-4. С. 48-53.

Posokhin V.N. – doctor of technical sciences, professor
E-mail: posohin@kgasu.ru
Ziganshin A.M. – candidate of technical sciences, associate professor
E-mail: amziganshin@kgasu.ru
Gorohova A.Y. – student
E-mail: alealen-94@mail.ru
Kazan State University of Architecture and Engineering
The organization address: 420043, Russia, Kazan, Zelenaya st., 1

About natural convection over the horizontal heat sources

Resume

This work presents results of numerical research of natural convection above the horizontal plate flush with the surrounding surface. Arising jet can be divided into three sections – initial where the flow has a laminar flow regime, continue to increase the height of the flow begins to lose stability – a zone of transition flow, and with a certain height – developed turbulence jet. The concept of the Rayleigh number for an arbitrary section Ra_x , as the sum of Ra_0 – shows the ratio of gravity forces and viscous forces in the area adjacent to the horizontal heat source, and ΔRa_x additive characterizes the change in the number of Rayleigh on the jet height.

Conducted a series of numerical studies using laminar model i.e. solve a system of equations of fluid motion without the use of RANS approach. Solving the tasks with changing of heat flux of the source, so that Ra_0 was within $8 \cdot 10^2 \div 10^4$, which corresponds to a laminar

mode of heat transfer. At the same time, Ra_x values depending on the height changed significantly. According to the numerical results plotted the graphs of changes of relative axial velocity and excessive temperature and relative Rayleigh number $\overline{Ra}_x = Ra_x/Ra_0$. There was some critical height x_{cr} – the beginning of the transient zone. Also determined the dependence $\overline{x}_{sp} = f(Ra_0)$.

Further results of numerical modeling using RANS approach are shown. The graphs of the relative change in axial velocity using different turbulence models are plotted. It is shown that, k- ϵ model reproduce the kinematics of the flow better than the other on the main zone of the jet, and on the initial section – laminar model.

Keywords: natural convection, flat heat source, flow regimes, the critical value of the Rayleigh number, turbulence models.

Reference list

- 1. Baturin V.V., Elterman V.M. Aeration of industrial buildings. 2nd ed.. and ext. M.: Gosstroiizdat, 1963. 317 p.
- 2. Kutateladze S.S. Heat transfer and flow resistance: A Reference Guide. M.: Energoatomisdat, 1990. 367 p.
- Popov I.A. Hydrodynamics and heat transfer of external and internal natural convection vertical flows with intensification. Enhancement of heat transfer: a monograph / Ed. Y.F. Gortyshov. – Kazan: Center for Innovative Technologies, 2007. – 326 p.
- 4. Martynenko O.G., Khramtsov P.P. Free-Convective Heat Transfer // Free. Heat Transf. With Many Photogr. Flows Heat Exch. Berlin / Heidelberg: Springer-Verlag, 2005. 516 p.
- 5. Corcione M. Heat transfer correlations for free convection from upward-facing horizontal rectangular surfaces // WSEAS Trans. Heat Mass Transf., 2007, Vol. 2, № 3. P. 48-60.
- 6. Wang H. Basic formulas and data on heat transfer for engineers / Directory. M.: Atomizdat, 1979. 216 p.
- ANSYS FLUENT 6.3 Documentation / 12.3.8 Convective Heat and Mass Transfer Modeling. URL: <u>https://www.sharcnet.ca/Software/Fluent6/html/ug/node476.htm</u> (reference date: 02.27.2016).
- 8. Romanov S.V., Posokhin V.N., Ziganshin A.M. The effect of the method of heat input to the results of numerical solution of the problem of free convection on volumetric heat sources // Izvestija vysshih uchebnyh zavedenij. Problemy energetiki, 2013, № 3-4. – P. 48-53.