УДК 624.012.4-183.2, 624.044:539.384 Радайкин Олег Валерьевич кандидат технических наук, доцент E-mail: <u>olegxxii@mail.ru</u> Казанский государственный архитектурно-строительный университет Адрес организации: 420043, Россия, г. Казань, ул. Зелёная, д. 1 Шарафутдинов Линар Альфредович ведущий инженер E-mail: <u>sh. linar@mail.ru</u> ООО «Казанский инженерный проект»

Адрес организации: 420021, Россия, г. Казань, ул. Лево-Булачная, д. 52, оф. 19

К оценке совместного влияния начальных напряжённо-деформированного состояния и силовых трещин на прочность, жесткость и трещиностойкость железобетонных балок, усиляемых сталефибробетонной «рубашкой», на основе компьютерного моделирования в ПК «ANSYS»

Аннотация

Постановка задачи. Цель исследования – оценить совместное влияние начальных напряженно-деформированного состояния (НДС) и силовых трещин в железобетонных балках, усиляемых сталефибробетонной (СФБ) «рубашкой», на их жёсткость, прочность и трещиностойкость.

Результаты. Основные результаты исследования показали, что несущая способность усиленных балок (P_{ult}), а также нагрузка, соответствующая моменту появления в СФБ-«рубашке» трещин ($P_{crc,fb}$), практически не зависят от предшествующей усилению начальной нагрузки P_0 вплоть до уровня 0,6 от разрушающей P_{ult}^* (не усиленных балок), далее с увеличением этого уровня при прочих равных условиях, несущая способность усиленных балок снижается на 10,7 %, а нагрузка появления трещин наоборот – возрастает почти в 1,5 раза. Так же установлено, что с ростом начальной нагрузки P_0 , вплоть до уровня 0,678 P_{ult}^* , жёсткость усиленной балки плавно снижается в 3,76 раз, а при последующем увеличении P_0 происходит резкое падение жёсткости ещё в 7,57 раз.

Выводы. Значимость полученных результатов для строительной отрасли состоит в открывшейся возможности разработать инженерную методику усиления железобетонных балок с помощью фибробетонной рубашки, которая смогла бы учесть влияние начальных напряжённо-деформированного состояния и силовых трещин на прочность, жесткость и трещиностойкость усиленных балок. Такая методика позволит получать конструктивные решения усиления с более низким расходом материалов в сравнении с существующими способами усиления.

Ключевые слова: усиление, сталефибробетон, изгибаемый элемент, компьютерное моделирование, численный эксперимент, предыстория нагружения.

Введение

В ходе возведения и последующей эксплуатации зданий и сооружений из железобетона часто возникает необходимость в усилении несущих конструкций (это может быть связано с увеличением нагрузок под реконструкцию, чрезмерным накоплением повреждений, ошибками при проектировании и строительстве и с другими причинами). Применение сталефибробетонных «рубашек» для этих целей позволяет достичь увеличения несущей способности, трещиностойкости и жёсткости с малыми затратами [1-3]. Так, применение сверхвысокопрочного сталефибробетона (в иностранной литературе – UHPFRCC) позволяет увеличить несущую способность в 2,0-2,8 раза, что эквивалентно усилению преднапряжённой арматурой (в шпренгельной затяжке) [3-5], уменьшает ширину раскрытия трещин в 1,5-2 раза [6]. Однако отсутствие в отечественных Нормах

инженерных методик расчёта усиления с использованием СФБ-«рубашек» значительно тормозит их практическое применение. Наилучшим способом решить данную проблему возможно используя нелинейную деформационную модель, которая позволяет получать НДС железобетонной конструкции, близкое к эксперименту, на всех этапах нагружения и, поэтому, как мы предполагаем, подбирать оптимальные параметры усиления. Одна из главных проблем при разработке такой методики расчёта – это заметное влияние предыстории нагружения на работу усиленной конструкции, которое следует учесть. Это, в свою очередь, проявляется во влиянии следующих факторов:

1 – наличие начального НДС конструкции в момент времени, непосредственно предшествующего усилению, и возникающего от суммарного действия собственного веса конструкции и остаточных деформаций, вызванных ранее действующей полезной нагрузкой (в ходе усиления обычно стремятся максимального разгрузить конструкцию, при этом в каких-то случаях часть полезной нагрузки всё же может продолжать действовать);

2 – наличие начальных трещин в усиляемой конструкции, которые могут иметь как минимум четыре источника своего возникновения:

a) действие полной статической нагрузки, которая вызывает появление силовых трещин (при этом считается, что в большинстве случаев для бетона работа с такими трещинами является нормальной, вопрос только в ограничении их ширины раскрытия);

б) действие циклических нагрузок (например, периодическое изменение снеговой нагрузки на плите покрытия здания), в том числе периодически повторяющихся динамических, которые взывают накопление рассеянных микротрещин в бетоне, что может быть отражено в соответствующей трансформации диаграмм состояния этого материала;

в) технологические дефекты, например, усадочные трещины, поры и прочие несплошности бетона;

г) эксплуатационные механические повреждения;

3 – различие как кратковременных, так и длительных деформационных свойств «старого» бетона конструкции и «нового» сталефибробетона рубашки усиления, то есть в различии реологии (ползучести, усадки) того и другого материала;

4 – и др.

Перечисленные факторы влияния предыстории нагружения по-своему сказываются на параметрах усиления железобетонных балок, в том числе, на их несущую способность, трещиностойкость, а также жёсткость. Результирующий эффект от учёта их действия может дать наиболее достоверную картину о работе усиленных СФБ-«рубашками» балок под нагрузкой. На её получение направлены наши исследования, которые ведутся относительно простыми этапами. Так, на первом этапе были проведены экспериментальные и численные исследования, исключающие предысторию нагружения [7], тем не менее, имеющие определённую практическую значимость (например, возможны ситуации, когда на строительном объекте могут ошибочно смонтировать железобетонную балку с недостаточной несущей новую способностью незамедлительно предпримут меры по её усилению). На втором этапе исследований – в работе [8] – предпринята попытка учесть фактор п. 2а из вышеприведённого перечня – это наличие силовых начальных трещин. Было установлено, что несущая способность усиленной балки с начальными повреждениями, соответствующими предварительной нагрузке $P_0=0.917 P_{ult}^*$ на не усиленную балку (где P_{ult}^* – её несущая способность), по сравнению с усиленной балкой без начальных трещин ($P_0=0$) ниже на 18,4 %; трещиностойкость усиленной балки с начальными повреждениями, соответствующими предварительной нагрузке $P_0=0,2P_{ult}^*$ падает на 13,3 %, а при дальнейшем росте P_0 – остаётся постоянной. В развитие этих исследований целью данной статьи ставилось оценить совместное влияние факторов 1 – начального НДС железобетонных балок, возникшего к моменту усиления – и 2а.

Проведённый анализ состояния вопроса показывает, что получить, необходимые для достижения цели, данные по известным теоретическим моделям из научнотехнической литературы или с применением нормативного подхода СП 63.13330.2012 и СП 360.1325800.2017 невозможно. Поэтому решено воспользоваться наиболее универсальным инструментом анализа НДС конструкций – методом конечных элементов, реализованным в ПК «ANSYS».

Методика компьютерного моделирования в ПК ANSYS

Исходными данными для верификации результатов проведенного в рамках настоящей работы компьютерного моделирования служат экспериментальные данные авторов для балок двух серий:

Серия 1 – железобетонные балки без усиления – контрольные образцы – два «близнеца» Б-2, Б-4 (рис. 1 а).

Серия 2 – балки, усиленные СФБ-«рубашкой» – «близнецы» Б-1р, Б-3р (рис. 1б). При этом усиляемые балки не имели начальных видимых трещин, за исключением усадочных, а начальное НДС было вызвано только действием сил тяжести.

Рис. 1. Параметры балки 1-ой серии (а) и 2-ой серии (б), схема нагружения (в) (иллюстрация авторов)

Очевидно, что, для наиболее полной оценки совместного влияния начальных НДС и силовых трещин, физический эксперимент должен включать в себя несколько серий образцов-балок (не менее 10), каждая из которых должна соответствовать определённому уровню предварительному нагружению в долях от разрушающей нагрузки (P_0/P_{ult}^*). В ходе этого предварительного нагружения данная железобетонная балка деформируется, в

ней возникают усилия и напряжения, а также появляются силовые трещины. Далее нагрузка с балки снимается частично или полностью, а после этого выполняется её усиление с помощью СФБ-«рубашки». Однако для сокращения затрат на эксперимент примем следующие допущения:

 – параметры начальных НДС и картины развития силовых трещин на всех этапах нагружения – от нуля вплоть до разрушения – получены на образцах только одной серии (контрольные образцы Серии 1);

– усиление СФБ-«рубашками» выполнено для балок Серии 2 – без начальных видимых трещин и с начальным НДС, вызванным только действием сил тяжести;

– данные, полученные с учётом предыдущих двух допущений, являются основой для проверки работоспособности предложенной ниже методики компьютерного моделирования усиляемых балок в ПК «ANSYS»;

– задание в компьютерную конечно-элементную модель данных испытаний балок обеих серий должно обеспечить достижение поставленной в работе цели.

Основой для разработки такой конечно-элементной модели усиляемых балок стала методика компьютерного моделирования, предложенная ранее в работе [7]. На данном этапе исследований уточнение этой методики заключается в применении специальной программной функции ПК «ANSYS» – команды RESTART, которая даёт возможность выполнять анализ НДС конструкций с изменением геометрической схемы в ходе расчёта. Это позволило рассмотреть 8 образцов балок, одинаковых по геометрическим, прочностным, кинематическим параметрам, а также по схеме армирования, но усиляемых при разном уровне начальной нагрузки P_0 , в соответствии с программой, приведённой в табл.

Таблица

Программа численного исследования

Маркировка балки	Бм-1	Бм-2	Бм-3	Бм-4	Бм-5	Бм-б	Бм-7	Бм-8
Предварительная нагрузка <i>P</i> 0	0	$0,125P_{ult}^{*}$	$0,2P_{ult}^{*}$	$0,4 P_{ult}^{*}$	$0,59P_{ult}^{*}$	$0,678 P_{ult}^{*}$	$0,917 P_{ult}^{*}$	P_{ult}^{*}

Результаты расчёта балок усиленных СФБ-«рубашкой» с учётом начального НДС и силовых трещин

По результатам расчёта получены значения прогиба в середине пролёта для всех образцов по мере нагружения (рис. 2).

Для каждой балки, кроме Бм-8, характерен перелом кривой зависимости «прогибнагрузка» при усилении, что обусловлено увеличением жёсткости за счёт добавления в КЭ-модель СФБ-«рубашки». При этом ордината точки перелома соответствует нагрузке в момент усиления. Все графики для балок Бм-1...Бм-7 ограничены двумя кривыми: снизу – зависимостью «f-P» для балки без усиления, а сверху – для усиленной балки, но без начальных НДС и трещин. Зависимость прогиба от нагрузки «f-P» для балки Бм-8 (усиленной при начальном НДС, вызванном нагрузкой P_{ult}^*) совпадает с зависимостью балок Серии 1, т.е. балок без усиления. Это говорит об очевидном факте, что восстановить уже разрушенную балку с помощью СФБ-«рубашки» нельзя.

На рис. 3 в качестве примера отдельно показаны графики прогибов для балок 1, 2 Серии и балки Бм-4, на котором показаны основные стадии её работы:

До усиления:

I – упругая работа – линейная зависимость между внешними и внутренними усилиями, заканчивается Стадией Ia, при которой эпюра напряжений в растянутой зоне бетона искривляется (возникают псевдопластические деформации);

II – неупругая работа – появление и развитие видимых трещин;

После усиления:

IIa – работа конструкции с трещиной в балке – перераспределение напряжений и деформаций на СФБ-«рубашку»;

III – появление и развитие видимых трещин в СТФ-«рубашке»;

IV – стадия разрушения – потеря несущей способности балки при достижении предела текучести арматуры.

Рис. 2. Сравнение графиков «Прогиб-нагрузка» (иллюстрация авторов)

Полученные данные позволили провести сравнение (рис. 4) прогибов всех усиленных балок Бм-1...Бм-8 при одной и той же нагрузке P (эти балки отличаются между собой только уровнем начальной нагрузки, приложенной до усиления, P_0/P_{ult}^*).

Так, при постоянной нагрузке P=1 тс прогиб увеличивается, а жёсткость соответственно уменьшается на 93,75 % при сравнении первых двух балок Бм-1 м Бм-2, то есть при изменении уровня начальной нагрузки в пределах $0 < P_0 < 0,125 P_{ult}^*$, а для балок Бм-3...Бм-8, то есть при $P_0 > 0,125 P_{ult}^*$, жёсткость остаётся практически постоянной. При постоянной нагрузке P=2 тс и изменении начальной нагрузки в пределах $0 < P_0 < 0,4P_{ult}^*$ для сравниваемых балок Бм-1...Бм-4 жёсткость падает уже в 4-е раза, но при $P_0 > 0,4P_{ult}^*$ (для оставшихся балок Бм-5...Бм-8), как и прежде она практически дальше не меняется. При P=3 тс и $0 < P_0 < 0,678 P_{ult}^*$ (балки Бм-1...Бм-6) жёсткость падает в 3,24 раза и при

 P_0 >0,678 P_{ult}^* (Бм-7, Бм-8) дальше не меняется. При P=4 тс и 0< P_0 <0,917 P_{ult}^* (Бм-1...Бм-7) жёсткость падает в 2,44 раза и при P_0 >0,917 P_{ult}^* (Бм-8) также дальше не меняется.

Рис. 3. Характерные стадии работы конструкции на кривых «прогиб-нагрузка» (иллюстрация авторов)

при 1 те — при 2 те — при 3 те — штри 4те

Рис. 4. Зависимость прогиба при разной нагрузке от уровня начальной нагрузки, *P*₀, для балок Бм-1...Бм-8 (иллюстрация авторов)

Рис. 5. Зависимость прогиба при нагрузке трещинообразования, $f_{crc,jb}$, в сталефибробетонной рубашке от уровня начальной нагрузки, P_0 , для балок Бм-1...Бм-8 (иллюстрация авторов)

Рис. 6. Зависимость разрушающей нагрузки, *P*_{ult}, и нагрузки трещинообразования в сталефибробетонной рубашке, *P*_{crc,fb}, от уровня начальной нагрузки, *P*₀, для балок Бм-1...Бм-8 (иллюстрация авторов)

Изменение прогиба от уровня начальной нагрузки P_0 при нагрузке трещинообразования в рубашке $P_{crc,fb}$ показано также для всех 8-и балок на рис. 5. На этом графике можно выделить 2 характерных участка: на первом участке при начальной нагрузке $0 < P_0 < 0.678 P_{ult}^*$ (для сравниваемых балок Бм-1...Бм-6) жёсткость уменьшается в 3,76 раз, после чего на втором участке при $0.678 P_{ult}^* < P_0 < P_{ult}^*$ (для балок Бм-7, Бм-8) происходит интенсивное снижение жёсткости в 7,57 раз.

На рис. 6 приведены графики изменения разрушающей нагрузки, P_{ult} , и нагрузки трещинообразования в СФБ-«рубашке», $P_{crc,fb}$, в зависимости от уровня начальной нагрузки P_0 , то есть для сравниваемых балок Бм-1...Бм-8. Видно, что P_{ult} не меняется при $0 < P_0 < 0,59P_{ult}^*$ (для балок Бм-1...Бм-5), где $P_{ult}^*=4,8$ тс, и составляет 5,6 тс – это больше, чем у не усиленной балки на 16,7 %. После этого она снижается на 10,7 % – до 5 тс (для балок Бм-6...Бм-8), то есть усиление СФБ-«рубашкой» для балки Бм-8 (P_{ult}^*) увеличивает несущую способность всего лишь на 4,17 %. Нагрузка трещинообразования в СФБ-«рубашке» $P_{crc,fb}$ также не изменяется при уровне начальной нагрузки от 0 до 0,59 P_{ult}^* и равна 3 тс, после чего увеличивается в 1,5 раза. Данное увеличение $P_{crc,fb}$ объясняется «поздним» усилением, когда трещинообразование совпадает с моментом усиления (балки Бм-7, Бм-8) или наступает через пару шагов нагрузки после этого (балки Бм-5, Бм-6).

На графиках зависимости максимальных напряжений в растянутой арматуре, $\sigma_{s,max}$, от нагрузки, *P*, для усиляемых балок Бм-1...Бм-8 (рис. 7), как и на графиках прогибов (рис. 2)

наблюдается характерный перелом в момент усиления, свидетельствующий о перераспределении части напряжений с арматуры на СФБ-«рубашку». Как и для случая с прогибами все кривые на рис. 7 лежат выше графика « $\sigma_{s,max} - P_0/P_{ult}^*$ », полученного для балки Серии 1 (без усиления). Однако есть отличие: кривая для балки Б-2 (усиленная без начального НДС) уже не является ограничителем сверху, эту функцию теперь выполняют кривые для балок Бм-2 и Бм-3 (с невысоким уровнем начальной нагрузки – до $0,2P_{ult}^*$) и чем выше уровень P_0/P_{ult}^* , тем больше кривая « $\sigma_{s,max} - P_0/P_{ult}^*$ » стремится к графику балки Б-2. Это говорит о том, что если усиление балки происходит до появления в ней трещин и заметных неупругих деформаций, то в дальнейшем надёжная работа усиленной балки будет обеспечена в основном за счёт арматуры и устройство СФБ-«рубашки» в таком случае будет малоэффективным мероприятием. И наоборот, если до усиления на балки будет осуществляться именно на «рубашку», что будет свидетельствовать об её высокой эффективности.

Рис. 7. Сравнение графиков «Максимальные напряжения в арматуре σ_{s.max} – уровень начальной нагрузки, *P*₀/*P*_{ult}^{*} » для балок Бм-1…Бм-8 (иллюстрация авторов)

Общие выводы

1. Разработана методика компьютерного моделирования В ПК «ANSYS» НДС железобетонных балок, усиленных СФБ-«рубашками», которая позволяет учитывать уровень начальной нагрузки до усиления. Получены численные данные изменения прогиба, разрушающей нагрузки и нагрузки трещинообразования в СФБ-«рубашке» в зависимости от начальной нагрузки P_{0} .

2. Установлено, что целесообразно выполнять усиление балок в интервале изменения уровня начальной нагрузки P_0/P_{ult}^* от 0,4 до 0,59, в котором СФБ-«рубашка» высокоэффективно участвует в перераспределении усилий с балки на неё и позволяет максимально увеличить несущую способность усиляемой конструкции.

3. Выявлено, что перераспределение усилий с балки на СФБ-«рубашку» происходит, только если до усиления на балку была приложена нагрузка выше уровня $P_0/P_{ult}^*=0,4$, в противном случае в обеспечении надёжности усиленной балки основную роль будет играть собственная растянутая арматура, что свидетельствует о низкой эффективности усиления.

4. Несущая способность усиленной сталефибробетоном балки не изменяется в интервале $0 < P_0/P_{ult}^* < 0,59$ и равна 5,6 тс, что на 16,7 % выше, чем у не усиленной балки. При уровне начальной нагрузке выше $0,59P_{ult}^*$ несущая способность уменьшается на 10,7 % и составляет 5 тс, что всего лишь на 4,17 % больше несущей способности балки без усиления.

5. Нагрузка трещинообразования в СФБ-«рубашке» $P_{crc,fb}$ не изменяется при уровне начальной нагрузке от 0 до $0,59P_{ult}^*$ и равна 3 тс, после чего увеличивается в 1,5 раза. Данное увеличение $P_{crc,fb}$ объясняется «поздним» усилением, когда трещинообразование совпадает с моментом усиления (балки Бм-7, Бм-8) или наступает через пару шагов нагрузки после (балки Бм-5, Бм-6).

6. Изменение значений прогиба от уровня начальной нагрузки, при нагрузке трещинообразования в рубашке $P_{crc,fb}$, можно разделить на 2 характерных участка: на первом участке при начальной нагрузке $0 < P_0 < 0.678 P_{ult}^*$ (для сравниваемых балок Бм-1...Бм-6) жёсткость уменьшается в 3,76 раз, после чего на втором участке при $0.678 P_{ult}^* < P_0 < P_{ult}^*$ (для балок Бм-7, Бм-8) происходит интенсивное снижение жёсткости в 7,57 раз.

Заключение

С помощью численного и физического эксперимента удалось оценить совместное влияние начального НДС железобетонных балок, возникшего к моменту усиления, и наличие начальных трещин на прочность, жесткость и трещиностойкость усиленной балки. Следующим шагом исследований станет учёт в моделировании различия деформационных свойств «старого» бетона конструкции и «нового» сталефибробетона усиления, то есть реологии (ползучести, усадки) того и другого материала.

Список библиографических ссылок

- 1. Hussein L., Amleh L. Structural Behaviour of Ultra-High Performance Fibre Reinforced Concrete-Normal Strength Concrete or High Strength Concrete Composite Members // Construction and Building Materials. 2015. № 93. P. 1105–1116.
- 2. Habel K., Denarié E., Bruhwiler E. Experimental Investigation of Composite Ultra-High Performance Fibre-Reinforced Concrete and Conventional Concrete Members // ACI Structural Journal. 2007. № 104. P. 10–20.
- 3. Martinola G., Meda A., Plizzari G. A., Rinaldi Z. Strengthening and Repair of RC Beams with Fibre Reinforced Concrete // Cement Concrete Compos. 2010. № 32. P. 731–739.
- 4. Noshiravani T., Brühwiler E. Experimental Investigation on Reinforced Ultra-High Performance Fibre-Reinforced Concrete Composite Beams Subjected to Combined Bending and Shear // ACI Structural Journal. 2013. № 110. P. 251–262.
- Mohammed T., Abu Bakar B. H., Bunnori N. M. Torsional Improvement of Reinforced Concrete Beams using Ultra High-Performance Fibre Reinforced Concrete (UHPFC) Jackets – Experimental Study // Construction and Building Materials. 2016. № 106. P. 533–542.

- 6. Травуш В. И., Конин Д. В., Крылов А. С. Прочность железобетонных балок из высокопрочных бетонов и фибробетонов // Инженерно-строительный журнал. 2018. № 1 (77). С. 90–100.
- 7. Радайкин О. В., Шарафутдинов Л. А. К определению оптимального фибрового армирования на основе компьютерного моделирования в ПК ANSYS изгибаемых железобетонных элементов, усиленных с применением сталефибробетона // Новое в архитектуре, проектировании строительных конструкций и реконструкции : материалы III Международной (IX Всероссийской) конференции НАСКР-2016. Чебоксары. 2016. С. 138–143.
- 8. Радайкин О. В., Шарафутдинов Л. А. Компьютерное моделирование в ПК «ANSYS» НДС железобетонных балок, усиляемых сталефибробетонной «рубашкой», с учётом начальных трещин // Новое в архитектуре, проектировании строительных конструкций и реконструкции : материалы IV Международной (Х Всероссийской) конференции НАСКР-2018. Чебоксары. 2018. С. 138–143.
- 9. Черпаков А. В., Каюмов Р. А., Косенко Е. Е., Мухамедова И. З. Моделирование балки с дефектами конечно-элементным методом // Вестник Казанского технологического университета. 2014. № 17 (10). С. 182–184.
- 10. Клюев С. В., Клюев А. В., Абакаров А. Д., Шорстова Е. С., Гафарова Н. Е. Влияние дисперсного армирования на прочностные и деформативые характеристики мелкозернистого бетона // Инженерно-строительный журнал. 2017. № 7 (75). С. 66–75.

Radaykin Oleg Valerievich

candidate of technical sciences, associate professor E-mail: <u>olegxxii@mail.ru</u> **Kazan State University of Architecture and Engineering** The organization address: 420043, Russia, Kazan, Zelenaya st., 1 **Sharafutdinov Linar Alfredovich** leading engineer E-mail: <u>sh_linar@mail.ru</u> **LLC «Kazan Engineering Project»** The organization address: 420021, Russia, Kazan, Levo-Bulachnaya st., 52, of. 19

On the evaluation of the joint effect of the initial stress-strain state and force cracks on the strength, stiffness and crack resistance of reinforced concrete beams, reinforced with a steel-fiber-concrete «jacket», based on computer simulation in PC «ANSYS»

Abstract

Problem statement. The purpose of the study is to evaluate the combined effect of the initial stress-strain state and force cracks in reinforced concrete beams, reinforced with steel-fiber-concrete (SFC) «jacket», on their rigidity, strength and crack resistance.

Results. The main results of the study showed that the carrying capacity of reinforced beams (P_{ult}), as well as the load corresponding to the moment of cracking in the SFC «jacket» ($P_{crc, fb}$), practically do not depend on the initial load P_0 up to the amplification destroying P_{ult}^* (not reinforced beams), then with an increase in this level, ceteris paribus, the carrying capacity of reinforced beams decreases by 10,7 %, and the load of the appearance of cracks, on the contrary, increases almost 1,5 times. It was also found that with an increase in the initial load P_0 , down to the level of $0.678P_{ult}^*$, the stiffness of the reinforced beam gradually decreases by 3,76 times, and with a subsequent increase in P_0 , there is a sharp drop in stiffness by another 7,57 times.

Conclusions. The significance of the results obtained for the construction industry consists in the opportunity to develop an engineering technique for reinforcing concrete beams using a fiber-reinforced shirt, which could take into account the effect of the initial stress-strain state and force cracks on the strength, rigidity and crack resistance of reinforced beams. Such a

technique will allow one to obtain constructive amplification solutions with a lower consumption of materials in comparison with existing amplification methods.

Keywords: strengthening, steel fiber concrete, flexible element, computer simulation, numerical experiment, loading history.

References

- 1. Hussein L., Amleh L. Structural Behaviour of Ultra-High Performance Fibre Reinforced Concrete-Normal Strength Concrete or High Strength Concrete Composite Members // Construction and Building Materials. 2015. № 93. P. 1105–1116.
- 2. Habel K., Denarié E., Bruhwiler E. Experimental Investigation of Composite Ultra-High Performance Fibre-Reinforced Concrete and Conventional Concrete Members // ACI Structural Journal. 2007. № 104. P. 10–20.
- 3. Martinola G., Meda A., Plizzari G. A., Rinaldi Z. Strengthening and Repair of RC Beams with Fibre Reinforced Concrete // Cement Concrete Compos. 2010. № 32. P. 731–739.
- 4. Noshiravani T., Brühwiler E. Experimental Investigation on Reinforced Ultra-High Performance Fibre-Reinforced Concrete Composite Beams Subjected to Combined Bending and Shear // ACI Structural Journal. 2013. № 110. P. 251–262.
- Mohammed T., Abu Bakar B. H., Bunnori N. M. Torsional Improvement of Reinforced Concrete Beams using Ultra High-Performance Fibre Reinforced Concrete (UHPFC) Jackets – Experimental Study // Construction and Building Materials. 2016. № 106. P. 533–542.
- 6. Travush V. I., Konin D. V., Krylov A. S. The strength of reinforced concrete beams of high strength concrete and fiber-reinforced concrete // Inzhenerno-stroitel'nyy zhurnal. 2018. № 1 (77). P. 90–100.
- Radaykin O. V., Sharafutdinov L. A. On the definition of optimal fiber reinforcement based on computer modeling in ANSYS, flexural reinforced concrete elements reinforced using steel fiber reinforced concrete // New in Architecture, Building Structures Design and Reconstruction : Materials of the III International (IX All-Russian) conference NADCR-2016. Cheboksary. 2016. P. 138–143.
- Radaykin O. V., Sharafutdinov L. A. Computer simulation in the ANSYS software package of the VAT of reinforced concrete beams, reinforced with a steel-fiber-concrete «shirt», taking into account the initial cracks // New in architecture, building design and reconstruction: IV International materials (X All-Russian) Conference NADCR-2018. Cheboksary. 2018. P. 138–143.
- 9. Cherpakov A. V., Kayumov R. A., Kosenko E. E., Mukhamedova I. Z. Simulation of a beam with defects by the finite-element method // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. № 17 (10). P. 182–184.
- 10. Klyuev S. V., Klyuev A. V., Abakarov A. D., Shorstova E. S., Gafarova N. Ye. Influence of disperse reinforcement on the strength and deformative characteristics of fine-grained concrete // Inzhenerno-stroitel'nyy zhurnal. 2017. № 7 (75). P. 66–75.