УДК 535.33 Фурер В.Л. – доктор химических наук, профессор E-mail: <u>furer@kgasu.ru</u> Казанский государственный архитектурно-строительный университет Адрес организации: 420043, Россия, г. Казань, ул. Зеленая, д. 1

Изучение структуры, ИК- и КР-спектров фосфортригидразида методом функционала плотности

Аннотация

Постановка задачи. В данной работе мы сообщаем об изучении колебательных спектров и квантово-химических расчетах фосфортригидразида G_0 , который представляет собой дендример нулевого поколения с конической архитектурой. Эта работа является продолжением спектральных и квантово-химических исследований структуры и реакционной способности дендримеров. Рассчитанные геометрические параметры сравнивались с экспериментальными данными, полученными рентгеновским методом. Так, что основной замысел этой работы заключался в том, чтобы определить спектральные особенности различных сегментов дендримера: ядра и аминных функций групп с помощью теоретических вычислений.

Результаты. Измерены ИК- и КР-спектры фосфортригидразида, который представляет собой дендример нулевого поколения G_0 с концевой аминной группой. Оптимизация структуры и исследование вибраций реализованы для G_0 методом функционала плотности (ФП). Оптимизированные длины связей и валентные углы, полученные методом ФП, находятся в хорошем согласии с экспериментом. Полученные результаты позволят понять структуру, динамику и свойства дендримеров.

Выводы. Аминные функции отличаются пиками 3321, 3238, 1614 см⁻¹ в экспериментальном ИК-спектре и пиками 3327, 3241 см⁻¹ в спектре КР G_0 . Опытные частоты асимметричных и симметричных NH₂ валентных колебаний ниже, чем теоретические значения из-за внутримолекулярной водородной связи N–H…S. Эта водородная связь также ответственна за более высокую интенсивность этих полос в ИК-спектре по сравнению с теоретическими величинами. Предложено полное отнесение колебаний для G_0 .

Ключевые слова: фосфорсодержащий дендример, ИК-спектры, функционал плотности.

Дендримеры представляют собой интересный класс монодисперсных макромолекул с сильно разветвленной архитектурой, которые показывают полезные свойства в различных областях, таких как катализ, электрохимия, фотофизика, фармацевтика и медицина [1-6]. Строгий контроль размеров, формы и свойств дендримеров может быть достигнут. Описаны три различных метода синтеза малых фосфорных дендримеров [7]. Эти образцы получены вплоть до первого или второго поколения, используя фосфортригидразид (S)P[N(Me)–NH₂]₃ [7]. Для лучшего понимания структуры и свойств дендримеров необходимо изучить электронную структуру первых поколений дендримеров методами квантовой химии. Синтез и колебательные спектры дендримеров с тиофосфорильным ядром описаны ранее [8-10].

В данной работе мы сообщаем об изучении колебательных спектров и квантовохимических расчетах фосфортригидразида G_0 , который представляет собой дендример нулевого поколения с конической архитектурой. Эта работа является продолжением спектральных и квантово-химических исследований структуры и реакционной способности дендримеров. Рассчитанные геометрические параметры сравнивались с экспериментальными данными, полученными рентгеновским методом [11]. Так, что основной замысел этой работы заключался в том, чтобы выявить спектральные особенности сегментов дендримера: ядра и аминных функций. Полученные результаты позволят понять структуру, динамику и свойства дендримеров. Синтез и основные характеристики фосфортригидразида описаны ранее [7]. Молекула G_0 содержит ядро **S=P** и аминные концевые группы –**NH**₂ (рис. 1). Изученный дендример представляет собой кристаллическое соединение.

$$S=P-(-N-NH_2)_3$$

Рис. 1. Структура дендримера G_0

ИК-спектры записаны в области 4000-400 см⁻¹ с использованием прибора Вектор-22 фирмы. Пробы для записывания ИК-спектров приготовлялись путем прессования с бромистым калием, 64 скана суммировались для каждого спектра.

Спектры КР вызывались лазером Nd: YAG, и записывались прибором RAMII в области 3500-150 см⁻¹.

Вычисления колебательных спектров молекулы G_0 выполнены с использованием ВЗLYP функционала и базисного набора 6-31++G(d,p) посредством программы Гауссиан 09.

Оптимизированные структурные параметры молекулы G_0 представлены в табл. и на рис. 2. Геометрические параметры соединения G_0 были определены рентгеновским методом [11]. Кристаллическая структура G_0 показывает, что молекулы упорядочены в 3-D тубулярную структуру, которая обеспечивается N–H…S водородными связями. Каждый из N(CH₃)NH₂ заместителей, присоединенных к фосфорному центру, в молекуле G_0 является донором протона (NH), тогда как S атомы трех соседних молекул являются акцепторами протонов. Нет отличий между химически эквивалентными длинами связей.

Рис. 2. Оптимальная геометрия и нумерация атомов для дендримера G₀

Несмотря на то, что сравнение структур в газовой фазе и конденсированной фазе не является строгим, мы можем наблюдать разумное качественное согласие между теоретическими расчетами и экспериментальными данными (рис. 2, табл.). Рассчитанные длины связей (в Å) 1,960 (P(1)–S(2)), 1,704 (P(1)–N(4)), 1,425 (N(3)–N(4)), 1,463 (C(5)–N(4)) соответствуют опытным данным 1,958, 1,661, 1,429, 1,462. Теоретические валентные углы (в градусах) S(2)–P(1)–N(4) (112,9), P(1)–N(4)–N(3) (115,2), P(1)–N(4)–C(5) (120,0) согласуются с наблюдаемыми значениями 111,5, 113,2, 120,3.

Связь между атомами фосфора и азота описывается в терминах σ связывания и добавочного π связывания, возникающего из-за перекрывания *3d*-орбиталей фосфора с *p*-орбиталями азота. Экспериментальная длина связи P(1)–N(4) 1,660 в G₀ короче, чем, так называемая одинарная **P–N** связь 1,77 Å.

Отличительной чертой изученной молекулы является возможность $d_{\pi}-p_{\pi}$ сопряжения между фосфором и азотом. Квантово-химическая теория может объяснить структурные черты дендримеров. Структура молекулы G_0 достигается посредством взаимодействий $\sigma_2(P1-S2) \rightarrow \sigma^*_1(P1-N14)$, $\sigma_1(P1-N4) \rightarrow \sigma^*_3(P1-S2)$ и $\sigma_1(P1-N4) \rightarrow \sigma^*_1(P1-N12)$ с энергиями 21,78, 78,99, 17,74 Ккал/моль.

Форма молекулы дендримера может быть охарактеризована отношениями главных значений тензора момента инерции. Для сферы эти отношения равны единице, а для молекулы G_0 они составляют 0,89 и 0,98. Таким образом, молекула G_0 имеет слегка асимметричную форму, которая определяет способность молекул к самоупорядочению.

Таблица

	Эксп.	Расч.		Эксп.	Расч.
Длины связей					
P(1)–S(2)	1,958	1,960	N(11)–N(12)	1,429	1,424
P(1)–N(4)	1,661	1,704	N(19)–N(20)	1,429	1,424
P(1)–N(12)	1,660	1,704	C(5)–N(4)	1,462	1,463
P(1)–N(20)	1,660	1,704	C(13)–N(12)	1,462	1,463
N(3)–N(4)	1,429	1,425	C(21)–N(20)	1,462	1,463
Валентные углы					
S(2)–P(1)–N(4)	111,5	112,9	P(1)–N(20)–N(19)	113,2	115,1
S(2)–P(1)–N(12)	111,5	112,9	P(1)-N(4)-C(5)	120,3	120,0
S(2)–P(1)–N(20)	111,5	113,0	P(1)–N(12)–C(13)	120,4	119,9
P(1)–N(4)–N(3)	113,2	115,2	P(1)–N(20)–C(21)	120,4	119,8
P(1)–N(12)–N(11)	113,2	115,2			
Двугранные углы					
S(2)–P(1)–N(4)–N(3)	156,5	159,3	S(2)-P(1)-N(4)-C(5)	-60,2	-55,2
S(2)–P(1)–N(12)–N(11)	156,5	158,9	S(2)–P(1)–N(12)–C(13)	-60,2	-55,6
S(2)-P(1)-N(20)-N(19)	156,5	159,1	S(2)-P(1)-N(20)-C(21)	-60,2	-55,4

Экспериментальные и рассчитанные длины связей (Å) и валентные углы (⁰) молекулы G₀ Эксп. Расч. Эксп. Расч.

Дендримеры можно использовать в качестве новых типов носителей активных веществ [1, 2]. Для этого лекарство может быть помещено внутри дендримера, или заключено в сетку, состоящую из дендримеров, или присоединено к поверхности дендримера посредством стабильной или лабильной связи. Расчет зарядов на атомах позволяет охарактеризовать энергию электростатических взаимодействий. Вычисления показывают, что G_0 содержит связи с натуральными атомными зарядами [12] (в зарядах электрона) на атомах Р1 (1,881), S2 (-0,589), N3 (-0,718), N4 (-0,713), C5 (-0,455), H6 (0,217), H9 (0,389), H10 (0,385). Видно, что соединение G_0 может быть использовано в качестве носителя лекарств, благодаря водородному связыванию аминных функций.

Теоретические методы позволяют непосредственно сопоставлять опытные и вычисленные спектры. Это увеличивает надежность отнесения полос в колебательных спектрах. В данном исследовании использование спектроскопии в сочетании с квантовой химией интересно с точки зрения получения уникальной информации, которая помогает лучше понять особенности структуры дендримеров.

Пики 3327 и 3241 см⁻¹ в спектре КР и полосы 3321 и 3238 см⁻¹ в ИК-спектре G_0 являются асимметричными и симметричными NH₂ валентными колебаниями аминной группы (рис. 3-4). Наблюдаемые частоты ниже, чем теоретические значения благодаря N-H···S водородной связи. Н-связь приводит к увеличению интенсивности полос в ИК-спектре.

Рис. 3. Вычисленный (1) и наблюдаемый (2) ИК-спектры G₀

Рис. 4. Рассчитанный (1) и опытный (2) КР спектры G₀

Линия 2876 см⁻¹ в спектре КР и полоса 2871 см⁻¹ в ИК-спектре G_0 относятся к симметричным валентным колебаниям CH₃ групп. Пики 2971 и 2936 см⁻¹ в ИК-спектре и линии 2977 и 2942 см⁻¹ в спектре КР G_0 обусловлены асимметричными валентными колебаниями этих групп. Частота 1614 см⁻¹ в ИК-спектре G_0 приписана к NH₂ ножничным колебаниям. Максимум 1440 см⁻¹ в ИК-спектре и линия 1441 см⁻¹ в спектре КР G_0 связаны с асимметричными деформационными колебаниями CH₃ групп. Пик 1408 см⁻¹ в спектре КР и частота 1414 см⁻¹ в ИК-спектре G_0 обусловлены симметричными деформационными колебаниями CH₃ групп. Пик 1408 см⁻¹ в спектре КР и

Частота 1299 см⁻¹ в спектре КР и пик 1294 см⁻¹ в ИК-спектре G_0 приписаны к NNH деформации. Максимум 1180 см⁻¹ в ИК-спектре G_0 вызван NCH деформацией. Пики 1132, 1116, 1058 см⁻¹ в ИК-спектре и линии 1142, 1121 см⁻¹ в спектре КР G_0 отнесены к NCH изгибу и CN растяжению. Частоты 1018, 991 см⁻¹ в ИК-спектре и линии 1026, 980 см⁻¹ в спектре КР G_0 приписаны CN растяжению, NNH и NCH изгибам.

Максимумы 923, 907 см⁻¹ в ИК-спектре и пик 896 см⁻¹ в спектре КР G_0 были атрибутированы как NN и PN растяжения. Частота 736 см⁻¹ в ИК-спектре G_0 относится к P=S растяжению. Слабая линия 722 см⁻¹ в спектре КР и пик 718 см⁻¹ в ИК-спектре G_0 отнесены к PN, CN и NN валентным колебаниям. Слабая линия 574 см⁻¹ в спектре КР и полоса 567 см⁻¹ в ИК-спектре G_0 вызваны PN, NN и P=S растяжениями. Полоса 471 см⁻¹ в ИК-спектре и полоса 478 см⁻¹ в спектре КР G_0 отнесены к CNN, PNN и CNP деформационным колебаниям. Полоса 421 см⁻¹ в ИК-спектре и полосы 429, 385, 355, 287, 250, 224, 220, 209 см⁻¹ в спектре КР G_0 относятся к крутильным колебаниям вокруг NN, CN- и PN-связей.

Слабая полоса 722 см⁻¹ в спектре КР и полоса 718 см⁻¹ в ИК-спектре G_0 отнесены к PN, CN и NN валентным колебаниям. Слабая полоса 574 см⁻¹ в спектре КР и полоса 567 см⁻¹ в ИК-спектре G_0 вызваны PN, NN и P=S растяжениями. Полоса 471 см⁻¹ в ИК-спектре и полоса 478 см⁻¹ в спектре КР G_0 отнесены к CNN, PNN и CNP деформационным колебаниям.

Частота 421 см⁻¹ в ИК-спектре и линии 429, 385, 355, 287, 250, 224, 220, 209 см⁻¹ в спектре КР G_0 относятся к кручению относительног NN-, CN- и PN-связей.

Следовательно, ядро дендримера P=S проявляет себя как полоса 736 см⁻¹ в ИКспектре G_0 , отнесенная к P=S растяжению. Функциональные аминные группы отличаются частотами 3321, 3238, 1614 см⁻¹ в ИК-спектре G_0 . Линии 3327, 3241, 1593 см⁻¹ в экспериментальном спектре КР G_0 обусловлены этими группами.

Интенсивность основных полос в ИК- и КР-спектрах G_0 передаются вычислениями. Рассчитанные спектральные кривые G_0 соответствуют опыту во всем спектральном диапазоне.

Было проведено очень большое число реакций аминных групп G_0 [7]. Например, впервые описан дендример, имеющий три и даже четыре различных типа терминальных функций одновременно [7]. Этот очень специфичный тип функционализации был назван «мультиплюрафункционализация» [7].

Мы рассчитали энергии наивысшей занятой молекулярной орбитали (H3MO) и самой низкой не занятой молекулярной орбитали (HHMO). Для G_0 H3MO распространяется по всей молекуле, тогда как HHMO локализована на аминных группах. Самым нуклеофильным местом молекулы G_0 является атом S2. Этот атом наиболее богат электронами и образует связь S···H–N.

Список библиографических ссылок

- Caminade A. M., Ouali A., Laurent R., Turrin C. O., Majoral J. P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology // Coord. Chem. Rev. 2016. V. 308. P. 478–497.
- 2. Caminade A. M. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine // Chem. Soc. Rev. 2016. V. 45. P. 5174–5186.
- Caminade A. M., Majoral J. P. Bifunctional phosphorus dendrimers and their properties // Molecules. 2016. V. 21. P. 538–561.
- Caminade A. M., Hameau A., Majoral J. P. The specific functionalization of cyclotriphos-phazene for the synthesis of smart dendrimers // Dalton Trans. 2016. V. 45. P. 1810–1822.
- 5. Caminade A. M., Turrin C. O., Majoral J. P. Biological properties of water-soluble phosphorhydrazone dendrimers // Brazilian J. Pharm. Sci. 2013. V. 49. № 1. P. 33–44.
- 6. Caminade A. M., Laurent R., Zablocka M., Majoral J. P. Organophosphorus chemistry for the synthesis of dendrimers // Molecules. 2012. № 17. P. 13605–13621.
- Launay N., Galliot C., Caminade A. M. Synthesis of small phosphorus dendrimers from (S)P[N(Me)-NH₂]₃// Bull. Soc. Chim. Fr. 1995. V. 132. P. 1149–1155.
- Furer V. L., Vandyukova I. I., Vandyukov A. E., Majoral J. P., Caminade A. M., Kovalenko V. I. DFT study of structure, IR and Raman spectra of P'0 and P'4 dendrimers built from octasubstituted metal-free phthalocyanine core // Chem. Phys. 2009. V. 358. P. 117–183.
- Furer V. L., Vandyukov A. E., Majoral J. P., Caminade A. M., Kovalenko V. I. DFT study and vibrational spectra of the phosphorus-containing G0 generation dendrimer // Vib. Spec. 2006. V. 40. P. 155–160.
- Furer V. L., Vandyukov A. E., Majoral J. P., Caminade A. M., Kovalenko V. I. Fouriertransform infrared and Raman difference spectroscopy studies of the phosphoruscontaining dendrimers // Spectrochim. Acta. p. A, 2004. V. 60. P. 1649–1657.
- 11. Chandrasekhar V., Azhakar. A tubular architecture in a phosphorus based trihydrazide // Cryst. Eng. Com. 2005. V. 7. P. 346–349.
- 12. Glendening E. D., Landis C. R., Weinhold F. NBO 6.0: Natural bond orbital analysis program // J. Comp. Chem. 2013. V. 34. P. 1429–1437.

Furer V.L. – doctor of chemical sciences, professor
E-mail: <u>furer@kgasu.ru</u>
Kazan State University of Architecture and Engineering
The organization address: 420043, Russia, Kazan, Zelenaya st., 1

Investigation of structure, IR- and Raman spectra of phosphortrihydrazide by DFT method

Abstract

Problem statement. In this paper, we report the study of vibrational spectra and quantumchemical calculations of phosphortrihydrazide G_0 , which is a zero generation dendrimer with tapered architecture. This work is a continuation of the spectral and quantum-chemical studies of the structure and reactivity of the dendrimers. The calculated geometric parameters were compared with experimental data obtained by X-ray. So that the main objective of this work was to obtain the spectral characteristics of different structural parts of the dendrimer: core and terminal amine groups on the basis of quantum chemical calculations.

Results. The IR and Raman spectra of phosphortrihydrazide were registered. This compound is a zero generation dendrimer G_0 with terminal amine groups. Optimization of the structure and the analysis of normal vibrations was made for G_0 by density functional theory (DFT). The optimized bond lengths and angles obtained by DFT, are in good agreement with experiment. The obtained results allow to understand the structure, dynamics and properties of dendrimers.

Conclusions. Amine end groups are characterized by bands at 3321, 3238, 1614 cm⁻¹ in the experimental IR spectrum and bands at 3327, 3241 cm⁻¹ in the Raman spectrum of G_0 . Experimental frequency of asymmetric and symmetric NH₂ stretching vibrations are lower than the theoretical values due to the intramolecular hydrogen bond N–H···S. This hydrogen bond is also responsible for a higher intensity of these bands in the IR-spectrum compared with the theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.

Keywords: phosphorus-containing dendrimers, IR-spectra, Raman spectra, density functional theory.

References

- Caminade A. M., Ouali A., Laurent R., Turrin C. O., Majoral J. P. Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology // Coord. Chem. Rev. 2016. V. 308. P. 478–497.
- 2. Caminade A. M. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine // Chem. Soc. Rev. 2016. V. 45. P. 5174–5186.
- Caminade A. M., Majoral J. P. Bifunctional phosphorus dendrimers and their properties // Molecules. 2016. V. 21. P. 538–561.
- Caminade A. M., Hameau A., Majoral J. P. The specific functionalization of cyclotriphos-phazene for the synthesis of smart dendrimers // Dalton Trans. 2016. V. 45. P. 1810–1822.
- 5. Caminade A. M., Turrin C. O., Majoral J. P. Biological properties of water-soluble phosphorhydrazone dendrimers // Brazilian J. Pharm. Sci. 2013. V. 49. № 1. P. 33–44.
- 6. Caminade A. M., Laurent R., Zablocka M., Majoral J. P. Organophosphorus chemistry for the synthesis of dendrimers // Molecules. 2012. № 17. P. 13605–13621.
- Launay N., Galliot C., Caminade A. M. Synthesis of small phosphorus dendrimers from (S)P[N(Me)-NH₂]₃ // Bull. Soc. Chim. Fr. 1995. V. 132. P. 1149–1155.
- Furer V. L., Vandyukova I. I., Vandyukov A. E., Majoral J. P., Caminade A. M., Kovalenko V. I. DFT study of structure, IR and Raman spectra of P'0 and P'4 dendrimers built from octasubstituted metal-free phthalocyanine core // Chem. Phys. 2009. V. 358. P. 117–183.
- Furer V. L., Vandyukov A. E., Majoral J. P., Caminade A. M., Kovalenko V. I. DFT study and vibrational spectra of the phosphorus-containing G0 generation dendrimer // Vib. Spec. 2006. V. 40. P. 155–160.
- Furer V. L., Vandyukov A. E., Majoral J. P., Caminade A. M., Kovalenko V. I. Fouriertransform infrared and Raman difference spectroscopy studies of the phosphoruscontaining dendrimers // Spectrochim. Acta. p. A, 2004. V. 60. P. 1649–1657.
- 11. Chandrasekhar V., Azhakar. A tubular architecture in a phosphorus based trihydrazide // Cryst. Eng. Com. 2005. V. 7. P. 346–349.
- 12. Glendening E. D., Landis C. R., Weinhold F. NBO 6.0: Natural bond orbital analysis program // J. Comp. Chem. 2013. V. 34. P. 1429–1437.