УДК 624.012.45

В.А. Ерышев – доктор технических наук, профессор Д.С. Тошин – старший преподаватель Д.И. Латышев – аспирант Тольяттинский государственный университет (ТГУ)

РАСЧЕТНАЯ МОДЕЛЬ ОПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ ДЕФОРМАЦИЙ ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ РАЗГРУЗКЕ

АННОТАЦИЯ

Представлен алгоритм расчета нормального сечения изгибаемого железобетонного элемента при разгрузке. Методика разработана на основе деформационной модели с применением нелинейных диаграмм деформирования материалов при нагрузке и разгрузке. Установлены физические соотношения, связывающие деформации элемента с усилиями при разгрузке через нелинейную матрицу жесткости.

КЛЮЧЕВЫЕ СЛОВА: Бетон, железобетон, нагрузка, разгрузка, напряжение, деформации, нормальное сечение, диаграмма.

V.A. Eryshev – doctor of technical science, professor
D.S. Toshin – senior lecturer
D.I. Latishev – post-graduate student
Togliatti State University (TSU)

MODEL OF CALCULATION OF REMAINING DEFORMATION OF FERROCONCRET ROD AT UNLOADING

ABSTRACT

The algorithm of calculation of normal section of ferroconcrete rod at unloading is presented. The method is developed on the basis of deformation model with using of non-linear diagrams of materials deformation under loading and at unloading. The physical correlations, which connect the deformation of elements and interior force, by the usage of non-linear stiffness matrix at unloading are determined.

KEYWORDS: Concrete, ferroconcrete, loading, unloading, pressure, deformations, normal section, diagram.

Большинство строительных конструкций в процессе эксплуатации подвергаются повторным воздействиям, при которых временная нагрузка периодически снимается и прикладывается вновь через определенный промежуток времени. Опытные данные отечественных и зарубежных авторов свидетельствуют, что при полном снятии нагрузки (разгрузке) часть деформаций конструкции не восстанавливается. В нормальном сечении с трещиной возникают остаточные деформации (напряжения) растяжения в рабочей арматуре даже в том случае, если она работает в упругой области, и деформации от зажатия бетона на участке с трещинами. Усилия в расчетном сечении самоуравновешиваются. Современные нормативные расчет документы позволяют выполнять железобетонных элементов вплоть до разрушения с использованием инженерных методов и по деформационной модели (СП 52-101-2003) с использованием диаграмм деформирования материалов (арматуры и бетона), что позволяет при линейном законе распределения деформаций в каждой полоске по высоте сечения элемента определять реальные напряжения бетона или арматуры. Фактически расчет по деформационной модели сводится к подбору таких значений средних деформаций бетона сжатой зоны и растянутой арматуры, при которых в сечении с трещиной удовлетворяются условия равновесия. Итерационный процесс выполняется по специальным программам с применением компьютерной техники.

Вопрос деформирования железобетонных элементов при разгрузке недостаточно изучен, хотя накоплен определенный опыт: установлены аналитические связи между деформациями и напряжениями в исходных диаграммах деформирования арматуры и бетона при растяжении и сжатии [1], а также при немногократных повторных нагружениях, включая разгрузку до у,=0 [2] и смену знака напряжений, например, «сжатие-растяжение» [3]. Деформации зажатия берегов трещины были зафиксированы опытным путем по показаниям малобазных тензодатчиков, наклеенных по берегам трещин в начале разгрузки изгибаемого элемента [4]. По результатам специальных испытаний армированных образцов призм при знакопеременных нагрузках «растяжение-сжатие», выполненных в НИИЖБ под руководством академика Н.И. Карпенко, получены аналитические зависимости для описания диаграмм зажатия у_{лз}-е_{лз}, принято за начало учета напряжений зажатия в сечении с трещиной считать величину деформаций $e_{\mu} = 30.10^{-5} [3].$

В основу расчета нормальных сечений железобетонных элементов при разгрузке положены следующие предпосылки и допущения:

 средние деформации бетона и арматуры на участках между трещинами по высоте сечения элемента распределяются по линейному закону; справедлива гипотеза плоских сечений;

 связи между осевыми напряжениями и относительными деформациями арматуры и бетона в выделенных полосках по высоте сечения в вершине цикла принимаются в виде исходных диаграмм арматуры и бетона для кратковременного нагружения с постоянными скоростями роста деформаций;

 строятся отдельные диаграммы до полной разгрузки с напряжений сжатия или растяжения; при смене знака напряжений к указанным добавляются диаграммы другого знака со своими деформационными и предельными параметрами; диаграмма сжатия участка бетона с трещинами в растянутой зоне, которая включает в себя диаграмму блока между трещинами и диаграмму зажатия связей берегов трещин;

- расчет деформаций и напряжений производится в конечных приращениях, при уменьшении момента на величину ΔM за начало координат принимается вершина цикла, соответствующая максимальному

уровню нагружения моментом $M = \tilde{M}$; полные значения деформаций $\tilde{\mathbf{\xi}}_b$ и $\tilde{\mathbf{\xi}}_s$, напряжений $\tilde{\mathbf{\delta}}_b$ и $\tilde{\mathbf{\delta}}_s$ в элементарных полосках бетона и арматуры получаются суммированием одноименных величин в вершине цикла $\tilde{\mathbf{\xi}}_b$, $\tilde{\mathbf{\xi}}_s$ и $\tilde{\mathbf{\delta}}_b$, $\tilde{\mathbf{\delta}}_s$ и их приращений $\Delta \tilde{\mathbf{\xi}}_b$, $\Delta \tilde{\mathbf{\xi}}_s$ и $\Delta \tilde{\mathbf{\delta}}_b$, $\Delta \tilde{\mathbf{\delta}}_s$ с учетом знаков: $\tilde{\mathbf{\xi}}_b = \tilde{\mathbf{\xi}}_b + \Delta \tilde{\mathbf{\xi}}_b$, $\tilde{\mathbf{\xi}}_s = \tilde{\mathbf{\xi}}_s + \Delta \tilde{\mathbf{\xi}}_s$, $\tilde{\mathbf{\delta}}_b = \mathbf{\sigma}_b + \Delta \tilde{\mathbf{\delta}}_b$, $\tilde{\mathbf{\delta}}_s = \mathbf{\sigma}_s + \Delta \tilde{\mathbf{\delta}}_s$;

 переход от напряжений в полосках к обобщенным внутренним усилиям выполняется с помощью процедуры численного интегрирования напряжений по толщине элемента.

В вершине цикла на начало разгрузки при $M = \tilde{M}$ выделим линию распределения средних деформаций (рис. 1а, линия 1) и соответствующую схему распределения напряжений и усилий в сечении с трещиной (рис. 1б). Предположим, условия равновесия внешних и внутренних усилий выполняются. В матричной форме физические соотношения представляются в виде

{*M*}=[*D*]·{e}, или
$$\begin{cases} \widetilde{M} \\ 0 \end{cases} = \begin{vmatrix} D_{11} & D_{12} \\ D_{12} & D_{22} \end{vmatrix} \begin{cases} \widetilde{1}/r \\ r \\ \mathfrak{E}_0 \end{cases}, \quad (1)$$

где $D_{ij}(i, j=1, 2)$ – коэффициенты жесткости, определяемые при нагрузке по известным формулам [3];

 \tilde{l}/r и \mathfrak{E}_0 – кривизна и деформация выбранной

оси Z на начало разгрузки.

Выделим на схемах две зоны I и II. В зоне I двухзначная эпюра напряжений в бетоне: на участке x_c – напряжения сжатия (высота сжатой зоны не вычисляется по отдельной формуле, а определяется из условия равновесия), на участке x_{bi} – напряжения растяжения (диаграммный метод позволяет учесть напряжения растяжения в вершине трещины). Зона II равна высоте трещины h_r , в которой напряжения в

Рис. 1. Схема распределения деформаций (а) и напряжений по высоте сечения в вершине цикла (б) и при разгрузке (в)

бетоне равны нулю. Условной границей двух зон являются некоторые предельные деформации на

растяжение $\varepsilon_{bt,ult}$.

При разгрузке линия средних деформаций изменяет свое положение: уменьшаются средние деформации бетона и арматуры (рис. 1а, линия 2), угол наклона. Эпюра напряжений в сечении с трещиной трансформируется и при моменте $M = \tilde{M} - \Delta M$ в сечении можно выделить напряжения на четырех участках (рис. 1в). Рассмотрим на схеме распределения средних деформаций некоторые элементарные полоски, на которых отрезками покажем изменения деформации при разгрузке в зоне I (*ab*, *cd*, *ef*, *gh*) и в зоне II (*mn*). Деформациям в зоне I соответствуют напряжения $\mathfrak{T}_b(a)$, $\mathfrak{T}_b(c)$, $\mathfrak{T}_b(g)$ на начало

разгрузки и $\mathbf{S}_{b(b)}$, $\mathbf{S}_{b(d)}$, $\mathbf{S}_{b(f)}$, $\mathbf{S}_{b(h)}$ при

снятии нагрузки на величину ΔM . В зоне II по высоте трещины на начало разгрузки напряжения равны нулю.

Напряжения от зажатия σ_{b3} при разгрузке начинают возникать от вершины трещины в полосках, где деформации от зажатия берегов трещин $\varepsilon_{b3} \leq \varepsilon_{H}$ и уменьшаются к растянутой грани элемента. В области бетона, прилегающего к арматуре, за счет депланации сечения возможны дополнительные напряжения сжатия при разгрузке и результирующее усилие

N_{депл.}, приложенное в уровне растянутой арматуры. Поясним характер изменения деформаций в элементарных полосках при разгрузке на диаграммах деформирования бетона (рис. 2). Связи между напряжениями и деформациями в исходной диаграмме и диаграммах разгрузки принимают единообразно по аналогии с описанием диаграммы на сжатие

$$\varepsilon_b = \sigma_b / E_b^0 v_b \,, \tag{2}$$

где ε_b , σ_b , E_b^0 – соответственно относительные деформации, напряжения, начальный модуль упругости бетона;

V_b – коэффициент изменения секущего модуля, который равен отношению линейной части деформаций к общим деформациям.

Единообразие заключается в том, что формула (2) остается справедливой и для диаграмм растяжения, диаграмм обжатия блоков и диаграмм зажатия берегов трещин, где индекс «*b*» заменяется на «*bt*», «*b3*» и «*3*» соответственно и вводятся новые значения параметров

для вычисления коэффициентов v_{bt} , v_{b3} , v_3 [1, 3].

Рис. 2. Диаграммы деформирования бетона

Перенесем со своими значениями деформации $\mathfrak{E}_{b(bt)}$ и напряжения $\mathfrak{T}_{b(bt)}$ в полосках на исходную

диаграмму бетона, сохраняя буквенные обозначения *a*, *c*, *e* и *g*. Соответственно, точки *a* и *c* расположатся на диаграмме сжатия, точки *e* и *g* на диаграмме растяжения. Каждая точка на исходной диаграмме определяет начало координат для ветвей разгрузок в

осях $\sigma_{\Delta b} - \varepsilon_{\Delta b}$ и $\sigma_{\Delta bt} - \varepsilon_{\Delta bt}$ с направлением, противоположным исходным (индекс «Д» указывает, что расчет ведется в приращениях). При снятии нагрузки в полоске *a* по линии *ab* деформации и напряжения по модулю уменьшаются, сохраняя свой знак (на диаграмме кривая *ab*); в полоске *c* по линии *cd* деформации и напряжения изменяют свой знак «сжатие-растяжение» (на диаграмме кривая *cd*); в полоске по линии *ef* деформации и напряжения растяжения увеличиваются (на диаграмме растяжения участок кривой *ef*); в полоске *gh* растягивающие деформации и напряжения уменьшаются без изменения знака (на диаграмме кривая *gh*).

Криволинейный характер диаграммы разгрузки учитывает необратимость части нелинейных деформаций, накопленных при нагружении как на сжатие, так и на растяжение. В момент образования трещин в растянутой зоне II железобетонных элементов под нагрузкой бетон между трещинами удлиняется, а между берегов трещин сохраняются некоторые бетонные связи. При снятии нагрузки происходит

закрытие трещин, а при некоторых деформациях \mathcal{E}_{H}

(деформациях начала зажатия) берега трещин приходят в соприкосновение и через связи начинается обжатие

бетона напряжениями σ_{b3} (рис. 1в). Связь между напряжениями σ_{b3} и приращениями деформаций от начала зажатия $\varepsilon_{\Delta b3} = \varepsilon_{b3} - \varepsilon_{\mu}$ осуществляется через переменный модуль обжатия E_{b3} :

$$E_{b3} = \frac{\sigma_{b3}}{\varepsilon_{b3} - \varepsilon_{\mu}} = \frac{\sigma_{b3}}{\varepsilon_{\Delta b3}}.$$
 (3)

Деформации $\varepsilon_{\Delta b3}$ на участке с трещинами включают в себя деформации блока между трещинами $\varepsilon_{\Delta b}$ и деформации зажатия связей берегов трещин $\varepsilon_{\Delta 3}$:

$$\varepsilon_{\Delta b3} = \varepsilon_{\Delta 3} + \varepsilon_{\Delta b} = \frac{\sigma_{b3}}{E_b^0} \left(\frac{1}{\nu_3} + \frac{1}{\nu_b} \right) = \frac{\sigma_{b3}}{E_{b3}};$$
$$E_{b3} = E_b^0 \frac{\nu_3 \nu_b}{\nu_3 + \nu_b}; \ \varepsilon_{\Delta b3} = \varepsilon_{b3} - \varepsilon_{\mu}, \quad (4)$$

где н₃ – коэффициент изменения секущего модуля деформаций бетона вследствие зажатия берегов трещины. По структуре формула для определения коэффициента н₃ аналогична формуле для определения коэффициента н_b, изменяются лишь входящие параметры [3].

Уравнение равновесия внешних сил и внутренних усилий при разгрузке может быть записано в виде конечных приращений:

$$\Delta M = \sum_{i} \Delta \hat{\mathbf{\delta}}_{bi} A_{bi} z_{bi} + \sum_{i} \sigma_{b3i} A_{bi} z_{bi} + \sum_{j} \Delta \hat{\mathbf{\delta}}_{sj} A_{sj} z_{sj};$$
$$0 = \sum_{i} \Delta \hat{\mathbf{\delta}}_{bi} A_{bi} + \sum_{i} \sigma_{b3i} A_{bi} + \sum_{j} \Delta \hat{\mathbf{\delta}}_{sj} A_{sj}, \quad (5)$$

где *i* – номер бетонного участка; *j* – номер стержня арматуры; A_{bi} и A_{sj} – площадь *i*-ого участка бетона и *j*-ого стержня арматуры; z_{bi} и z_{sj} – координата центра тяжести *i*-ого участка бетона и *j*-ого стержня арматуры относительно выбранной оси Z.

Слагаемые
$$\sum_{j} \Delta \hat{\mathbf{S}}_{sj} A_{sj} z_{sj}$$
 и $\sum_{j} \Delta \hat{\mathbf{S}}_{sj} A_{sj}$

включают в себя усилия в растянутой арматуре и усилия от депланации при разгрузке в радиусе величины защитного слоя.

Определяющее физическое соотношение (1) записывается в форме приращений с заменой $\{M\}$ на

 $\{\mathcal{M}M\}, [D]$ на $[D_{\mathcal{A}}]$ и $\{e\}$ на $\{\mathcal{M}e\}$. Коэффициенты матрицы жесткости могут быть записаны в виде

$$D_{11}^{\Delta} = \sum_{i} A_{bi} z_{bi}^{2} \tilde{\mathbf{E}}_{\Delta bi}^{0} \tilde{\mathbf{v}}_{\Delta bi} + \sum_{i} A_{bi} z_{bi}^{2} E_{b3i} +$$

$$+ \sum_{j} A_{sj} z_{sj}^{2} E_{s} \tilde{\mathbf{v}}_{\Delta sj};$$

$$D_{12}^{\Delta} = D_{21}^{\Delta} = \sum_{i} A_{bi} z_{bi} \tilde{\mathbf{E}}_{\Delta bi}^{0} \tilde{\mathbf{v}}_{\Delta bi} +$$

$$+ \sum_{i} A_{bi} z_{bi} E_{b3i} + \sum_{j} A_{sj} z_{sj} E_{s} \tilde{\mathbf{v}}_{\Delta sj}$$

$$D_{22}^{\Delta} = \sum_{i} A_{bi} \tilde{\mathbf{E}}_{\Delta bi}^{0} \tilde{\mathbf{v}}_{\Delta bi} + \sum_{i} A_{bi} E_{b3i} +$$

$$+ \sum_{j} A_{sj} E_{s} \tilde{\mathbf{v}}_{\Delta sj} \qquad (6)$$

В системе уравнений (6) $E_{\Delta bi}^{0} v_{\Delta bi} = E_{\Delta bi}$ – секущий модуль деформаций бетона на ветвях разгрузки (для напряжений растяжения индекс «*b*» заменяется на «*bt*»). Начальные модули деформаций $E_{\Delta bi}^{0}$ принимают свои значения: при уменьшении по модулю напряжений до смены их знака (*ab*, *cc*', *gh*) в виде $E_{\Delta bi}^{0} = E_{b}^{0} / \nabla_{bi}$; при увеличении по модулю напряжений (*c'd*, *ef*) в системе координат $\sigma_{\Delta bt} - \varepsilon_{\Delta bt}$ определяется как касательный $E_{\Delta bii}^{\kappa 0}$ в начальной точке.

Связь напряжений в растянутой арматуре в трещине со средними деформациями при разгрузке определяется через коэффициент $\Psi_{\Delta s}$, учитывающий работу растянутого бетона на участке между трещинами (по аналогии с коэффициентом Ψ_s при нагрузке), величина которого принимается постоянной и равной значению на начало разгрузки $\Psi_{\Delta s} = \Psi_s$.

Расчетная схема распределения напряжений при разгрузке может видоизменяться в зависимости от максимальных уровней нагружения и насыщения сечения арматурой, в том числе с увеличением участка растягивающих напряжений в зоне I и возможным образованием трещин в сжатой зоне бетона.

Схема расчета деформаций включает четыре блока *A*, *B*, *C*, *D* (рис. 3). В блоке *A* вводятся исходные данные по геометрическим характеристикам нормального сечения, армированию и режиму нагружения. В блоках *B* и *C* выполняется расчет нормального сечения

Рис. 3. Блок-схема расчета кривизны изгибаемого железобетонного элемента при нагрузке и разгрузке А – ввод исходных данных, В – расчет при нагрузке, С – расчет при разгрузке в приращениях, D – определение полных деформаций и напряжений

при нагрузке на момент \widetilde{M} и при разгрузке на момент

∆*М* в приращениях соответственно. В блоке *D* путем алгебраического суммирования значений из расчетных блоков *B* и *C* определяются полные значения деформаций и напряжений.

Для проверки изложенных теоретических положений были проведены специальные экспериментальные исследования. Исследования проводились на балочных образцах сечением bxh=12x20 см и пролетом l=240 см, изготовленных по технологии завода ЖБИ из тяжелого бетона класса В30. Нагружение осуществлялось двумя равными силами, приложенными в третях пролета. Всего было изготовлено и испытано 12 балок. Для проведения экспериментальных исследований была запроектирована и изготовлена рычажная установка (рис. 4). Нагрузка создается наполнением водой грузовых емкостей и передается на испытываемую балку через два силовых рычага. В установке предусмотрена дозированная подача воды в емкости, определение величины силы непосредственно в точках ее приложения на образец и страховочные домкраты.

Испытаниям подвергались образцы двух серий, различающиеся степенью насыщения арматурой: в первой серии в качестве рабочей арматуры использовали стержни периодического профиля диаметром 8 мм (µ=0,48 %), из стали класса А400

Рис. 4. Схема установки

а – общий вид; б – разрез; 1 – испытываемый образец; 2 – опорная стойка балки; 3 – грузовой рычаг; 4 – опорная стойка рычага; 5 – грузовая емкость; 6 – страховочный домкрат; 7 – динамометр ДОС-5

Рис. 5. Относительные деформации от величины изгибающего момента ↑ на начало разгрузки 1 – расчет, × – опытные данные для балок серии 1; 2 – расчет, ● – опытные данные для балок серии 2; *M*_{crcl} и *M*_{crc2} – опытный момент трещинообразования для балок серии 1 и 2, соответственно

(марки 35ГС), во второй серии диаметром 12 мм (μ =1,08%) из стали того же класса. В верхней и нижней зонах сечения образцов устанавливали по два стержня, причем в верхней зоне диаметр арматуры для обеих

серий был равен 8 мм (μ^{\prime} =0,48 %).

Прочностные и деформационные характеристики бетона и арматуры устанавливали по данным испытаний на сжатие стандартных образцов-кубов 15х15х15 см, призм 15х15х60 см и арматурных стержней на растяжение.

В процессе испытаний балок фиксировались средние деформации крайнего волокна бетона сжатой зоны, арматуры в растянутой и сжатой зонах на базе 500 мм, максимальные прогибы в пролете, распределение деформаций по высоте сечения в трещине и между трещинами с помощью тензодатчиков на базе 50 мм.

Испытания балок производились в режиме кратковременных нагружений, время цикла 60 мин. Часть балок каждой серии испытывалась до разрушения, и определялась величина предельного момента (M_{p1} = 7,28 кН·м – для балок серии 1 и M_{p2} = 17,3 кН·м – для балок серии 2). Уровни максимальных моментов в циклах \hat{M} назначались из условия работы рабочей арматуры в упругой области, включая разгрузку балок без трещин $\tilde{M} < M_{crc}$ и с трещинами $\hat{M} > M_{crc}$. Для единства и удобства сравнительного анализа опытных и расчетных величин деформаций балок с разным процентом армирования, результаты представлены в относительных координатах

$$\eta = \widetilde{M} / M_p$$
 и f_{ocm} / \widetilde{f} , $\varepsilon_{b,ocm} / \varepsilon_b$ и

 $\varepsilon_{s,ocm} / \varepsilon_s$, где в числителе – остаточные деформации при полном снятии активной нагрузки, в знаменателе – максимальные в вершине цикла (рис. 5, а-в).

При разгрузке часть деформаций в балках не восстанавливается: в балках без трещин за счет нелинейных свойств бетона, в балках с трещинами включается механизм зажатия берегов трещин. Наибольшая доля остаточных деформаций составляет при снятии нагрузок близких к моменту трещинообразования. С ростом максимальных моментов в цикле относительные величины деформаций уменьшаются, хотя по абсолютной величине увеличиваются. С ростом процента армирования балок доля остаточных деформаций уменьшается, хотя характер изменения относительных деформаций в рассматриваемом диапазоне нагрузок сохраняется (смещение экстремумов объясняется существенной разницей в величинах разрушающих

нагрузок и соответственно $\eta_{crc1} > \eta_{crc2}$). Результаты расчета удовлетворительно соответствуют опытным данным, что свидетельствует об обоснованности принятых расчетных предпосылок. По показаниям тензодатчиков и приборов на бетоне и арматуре построены линии распределения деформаций по высоте сечения, которые согласуются с расчетными.

Для каждой величины ДM в сечении с трещиной формируются усилия со своими значениями. При полной разгрузке $ДM = \widetilde{M}$ расчетным путем получены величины усилий и построены их графики в зависимости от уровня максимальных моментов

 \widetilde{M} (рис. 6). В каждом уровне нагружения η_i сумма усилий равна нулю, что подтверждает равновесие усилий в сечении с трещиной.

Рис. 6. Расчетные остаточные усилия в сечении с трещиной

Предложенная в работе методика позволяет оценивать эксплуатационные параметры изгибаемых железобетонных элементов после полной или частичной разгрузки. Дальнейшее развитие деформационной модели с учетом диаграмм деформирования материалов при повторных нагрузках открывает возможность проведения количественной оценки снижения жесткости железобетонного элемента после однократного или немногократного нагружения, а также прогнозировать работу конструкций и изменение напряженно-деформированного состояния нормальных сечений при последующей эксплуатации.

Литература

- Карпенко Н.И. Общие модели механики железобетона. – М.: Стройиздат, 1996. – 412 с.
- Ерышев В.А., Тошин Д.С. Диаграмма деформирования бетона при немногократных повторных нагружениях // Известия вузов. Строительство, 2005, № 10.–С. 109-114.
- Карпенко Н.И., Ерышев В.А., Мухамедиев Т.А., Кузнецов А.В. Расчет железобетонных стержневых конструкций при немногократных повторных и знакопеременных нагрузках. – Тольятти: ТПИ, 1989. – 112 с.
- Ерышев В.А. Метод расчета деформаций железобетонных стержневых и плитных конструкций при повторных, знакопеременных и других видах сложного нагружения // Дис....д-ра техн. наук. – М., НИИЖБ, 1997. – 353 с.