УДК 691.553.4

Халиуллин М.И. – кандидат технических наук, доцент

E-mail: <u>khaliullin@kgasu.ru</u> **Гайфуллин А.Р.** – аспирант

Казанский государственный архитектурно-строительный университет

ШТУКАТУРНЫЕ СУХИЕ СМЕСИ НА ОСНОВЕ КОМПОЗИЦИОННОГО ГИПСОВОГО ВЯЖУЩЕГО ПОВЫШЕННОЙ ВОДОСТОЙКОСТИ

АННОТАШИЯ

Разработаны составы штукатурных гипсовых сухих смесей повышенной водостойкости с применением комплекса местных минеральных и химических добавок, в том числе отхода промышленности строительных материалов – керамзитовой пыли, отвечающие современным нормативным требованиям. Получены математические модели, описывающие влияние компонентов комплексной гидравлической добавки – керамзитовой пыли и извести – на основные физикотехнические свойства штукатурных гипсовых растворов.

КЛЮЧЕВЫЕ СЛОВА: композиционное гипсовое вяжущее, известь, керамзитовая пыль, пенообразователь, коэффициент размягчения, штукатурные гипсовые сухие смеси.

Khaliullin M.I. - candidate of technical sciences, associate professor

Gaifullin A.R. – post-graduate student

Kazan State University of Architecture and Engineering

PLASTER DRY MIXES ON THE BASIS OF COMPOSITE GYPSUM KNITTING THE RAISED WATER RESISTANCE

ABSTRACT

Structures of plaster dry mixes of the raised water resistance with application of a complex of local mineral and chemical additives, including a withdrawal of the industry of building materials – the haydite dust, meeting modern standard requirements are developed. The mathematical models describing influence of components of the complex hydraulic additive – a haydite dust are received and to exhaust on the cores physicotechnical properties of plaster solutions.

KEYWORDS: composite gypsum knitting, a lime, haydite dust, foaming agent, softening factor, plaster gypsum dry mixes.

Введение

Фактором, существенно ограничивающим область применения материалов на основе гипсовых вяжущих, является их недостаточная водостойкость. Повышение водостойкости, например штукатурных гипсовых сухих смесей, позволило бы расширить их применение в помещениях с повышенной (более 60 %) влажностью (кухни, ванные комнаты и т.д.) [1].

В работах П.П. Будникова, А.В Волженского, А.В. Ферронской, В.Ф. Коровякова и др. показано, что одним из наиболее эффективных направлений решения проблемы повышения водостойкости строительных материалов на основе гипсовых вяжущих является введение в состав вяжущего комплекса гидравлических и активных минеральных добавок (например, портландцемент, известь, а также шлаки, золы, микрокремнезем) [1-3].

Рядом исследователей показана эффективность использования для получения гипсовых вяжущих повышенной водостойкости тонкомолотого керамзита или керамзитовой пыли в составе комплексной гидравлической добавки. Утилизация керамзитовой пыли, которая собирается в системах пылеочистки при производстве керамзитового гравия (пылеосадительных камерах, циклонах, фильтрах), является достаточно серьезной проблемой. На крупных керамзитовых заводах ежесуточно образуется до 7-8 т керамзитовой пыли. В дальнейшем этот отход добавляют к сырой глине и возвращают в производство, но чаще вывозят в отвалы. Исследователями Уфимского государственного нефтяного технического университета рассмотрено совместное введение добавок извести и керамзитового наполнителя, полученного помолом керамзитового гравия [4], в МГСУ — совместное введение добавок портландцемента и керамзитовой пыли — отхода производства керамзита [3].

Целью настоящей работы явилась разработка составов штукатурных гипсовых сухих смесей повышенной водостойкости с применением комплекса местных минеральных и химических добавок, в том числе отхода промышленности строительных материалов – керамзитовой пыли.

Методы и материалы

В качестве вяжущего для проведения работы применялся строительный гипс Г5БІІ производства ООО «Аракчинский гипс», произведенный по ГОСТ 125-79.

В качестве компонента комплексной гидравлической добавки применялась известь негашеная третьего сорта по ГОСТ 9179-77 производства ООО «Казанский завод силикатных стеновых материалов».

В качестве тонкомолотого активного минерального компонента комплексной гидравлической добавки применялась керамзитовая пыль — отход производства керамзита — различного минерального состава, отобранная на некоторых заводах керамзитового гравия Республики Татарстан, размолотая до удельной поверхности 150, 300 и 500 м 2 /кг.

В качестве водоудерживающей применялась добавка высокомолекулярного полиэтиленоксида (PEO-S) по ТУ 6-05-231-341-88 производства ОАО «Казаньоргсинтез».

В качестве добавки замедлителя схватывания применялась лимонная кислота по ГОСТ 908-79 производства ЗАО «Белгородский завод лимонной кислоты «Цитробел»».

Испытания композиционных гипсовых вяжущих осуществлялись по ГОСТ 125-79, образцы испытывались на прочность в возрасте 7 сут. с последующим высушиванием до постоянной массы. Испытания штукатурных растворных смесей и растворов на основе осуществлялись по ГОСТ 31376-2008. Подвижность штукатурных растворных смесей составляла 12-13 см по глубине погружения конуса СтройЦНИИЛа.

Определение коэффициента размягчения осуществлялось по ТУ 21-0284757-90.

Результаты и обсуждение результатов

На первом этапе работы проведены исследования влияния добавки керамзитовой пыли различного минералогического состава (с различным содержанием глинистых минералов и аморфной фазы) при различной удельной поверхности, вводимой совместно с известью, на основные показатели физико-технических свойств композиционного гипсового вяжущего.

Получены зависимости, характеризующие влияние количества и удельной поверхности добавки керамзитовой пыли различного минералогического состава, вводимой совместно с известью, на прочностные показатели и коэффициент размягчения гипсового камня.

Установлено, что при введении комплексной добавки, включающей известь в количестве 5 % от массы гипсового вяжущего и керамзитовую пыль с удельной поверхностью $500 \text{ м}^2/\text{кг}$ в количестве 10-30 % от массы вяжущего, в зависимости от минералогического состава, коэффициент размягчения (K_p) гипсового камня повышается до значений $K_p > 0.6$, что соответствует гипсовым материалам повышенной водостойкости [1]. Оптимальная величина удельной поверхности молотой керамзитовой пыли, при которой достигаются наибольшие показатели физико-технических свойств гипсового вяжущего, составляет $500 \text{ м}^2/\text{кг}$.

В зависимости от минерального состава керамзитовой пыли ее введение в количестве 5-20 % от массы строительного гипса совместно с известью не приводит к снижению прочностных показателей гипсового камня. При введении до 10 % керамзитовой пыли с относительно небольшим содержанием глинистых минералов и наиболее высоким содержанием аморфной фазы увеличение прочности гипсового камня составляет более 10 %, по сравнению с контрольным составом.

С помощью рентгенофазового анализа модельных образцов искусственного камня, полученных при твердении составов: известь — молотая керамзитовая пыль различных проб, — установлено образование низкоосновных гидросиликатов кальция (рис. 1). Образование аналогичных продуктов при твердении гипсового камня с введением комплексной гидравлической добавки, включающей известь и молотую керамзитовую пыль, обеспечивает повышение прочностных показателей и водостойкости.

Установлено, что эффективность действия керамзитовой пыли как активной минеральной добавки повышается с увеличением в ее составе количества аморфной фазы и уменьшением суммарного количества глинистых минералов (рис. 1).

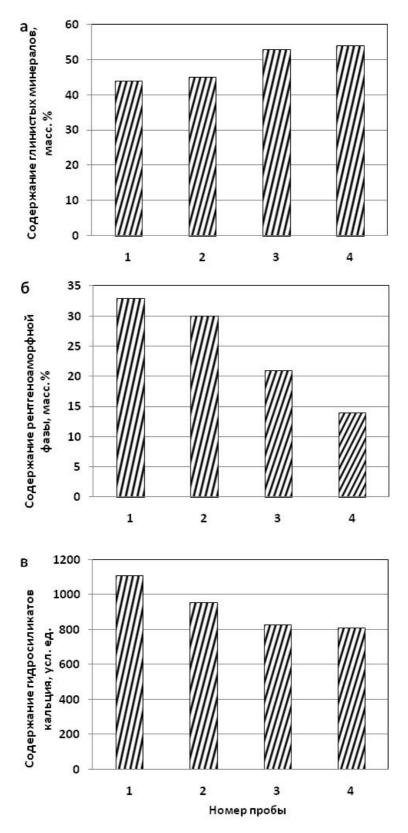


Рис. 1. Данные фазового состава по результатам рентгенографического анализа исходных проб керамзитовой пыли (а, б) и модельных образцов искусственного камня состава: известь – керамзитовая пыль (в): а – содержание глинистых минералов в исходных пробах керамзитовой пыли; б – содержание ренгеноаморфной фазы в исходных пробах керамзитовой пыли; в – содержание гидросиликатов кальция в модельных образцах искусственного камня состава: известь – керамзитовая пыль

На следующем этапе работы с применением метода ротатабельного композиционного центрального планирования эксперимента (РКЦП) проведена оптимизация составов комплексной гидравлической добавки для штукатурных гипсовых сухих строительных смесей.

Получены математические модели, описывающие влияние компонентов комплексной гидравлической добавки – керамзитовой пыли (x_1) и извести (x_2) на прочность при сжатии (y_1) и коэффициент размягчения (y_2) растворов на основе штукатурных гипсовых сухих смесей:

$$y_1 = 6,0074 - 0,0033x_1 + 0,1818x_2 + 0,0034x_1x_2 - 0,0015x_1^2 - 0,0332x_2^2$$
 (1)

$$y_2 = 0.2475 + 0.0164x_1 + 0.0830x_2 + 0.0004x_1x_2 - 0.0004x_1^2 - 0.0084x_2^2$$
 (2)

Анализ полученных уравнений регрессии и построенных с их использованием зависимостей, представленных на рис. 2-3, показывает следующее.

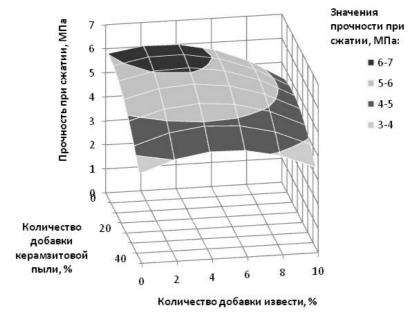


Рис. 2. Влияние компонентов комплексной гидравлической добавки керамзитовая пыль – известь на прочность при сжатии растворов на основе штукатурных гипсовых сухих смесей

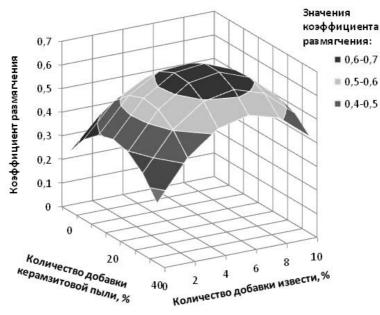


Рис. 3. Влияние компонентов комплексной гидравлической добавки керамзитовая пыль – известь на коэффициент размягчения растворов на основе штукатурных гипсовых сухих смесей

Таблица

Существует область оптимальных значений количества компонентов комплексной гидравлической добавки керамзитовая пыль – известь, при которых достигаются максимальные значения показателей прочности при сжатии и коэффициента размягчения растворов на основе штукатурных гипсовых сухих смесей.

Максимальные показатели прочности при сжатии, превышающей предел прочность при сжатии 5 МПа, а также коэффициента размягчения, превышающего значение 0,6 и соответствующее материалам повышенной водостойкости, достигаются при содержании в составе комплексной гидравлической добавки керамзитовой пыли в количестве 20-30 % по массе, извести в количестве 4-6 % по массе.

Увеличение в составе комплексной гидравлической добавки содержания извести свыше 6 % и керамзитовой пыли свыше 30 %, вследствие постепенного увеличения водопотребности растворных смесей, вызывает снижение показателей прочности и коэффициента размягчения.

Показатели основных физико-технических свойств разработанных штукатурных гипсовых сухих смесей повышенной водостойкости представлены в таблице.

Показатели основных физико-технических свойств штукатурных гипсовых сухих смесей повышенной водостойкости

Наименование свойств	Показатели свойств разработанных штукатурных гипсовых сухих смесей	Средние показатели свойств промышленных аналогов
Начало схватывания, мин	30 – 90	30-120
Водоудерживающая способность, %	98	не менее 95
Прочность при сжатии, МПа	5-7	4-7
Прочность сцепления с основанием, МПа	0,5-0,6	0,4-0,8
Коэффициент размягчения	0,65-0,7	0,3-0,45

По показателям основных физико-технических показателей штукатурные гипсовые сухие смеси повышенной водостойкости отвечают нормативным требованиям, соответствуют или превосходят существующие аналоги.

Заключение

Таким образом, в результате проведенных исследований получены математические модели, описывающие влияние компонентов комплексной гидравлической добавки — керамзитовой пыли и извести на основные физико-технические свойства штукатурных гипсовых растворов.

Разработанные составы штукатурных гипсовых сухих смесей повышенной водостойкости имеют следующие основные показатели физико-технических свойств: прочность при сжатии – 5-7 МПа; прочность сцепления с основанием – 0,5-0,6 МПа; коэффициент размягчения – 0,65-0,7 – и являются конкурентоспособными в ценовом отношении, по сравнению со стандартными рецептурами, благодаря применению в их составе водоудерживающей добавки – полиэтиленоксида местного производства взамен более дорогостоящих импортных водоудерживающих добавок, а также активной минеральной добавки – отхода промышленности строительных материалов керамзитовой пыли при снижении расхода более дорогостоящего строительного гипса.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гипсовые материалы и изделия (производство и применение). Справочник. / Под общей ред. А.В. Ферронской. М.: Изд-во АСВ. 488 с.
- 2. Волженский А.В., Роговой М.И., Стамбулко В.И. Гипсоцементные и гипсошлаковые вяжущие материалы и изделия. М.: Госстройиздат, 1960. 162 с.
- 3. Баженов Ю.М., Коровяков В.Ф., Денисов Г.А. Технология сухих строительных смесей. М.: Изд-во ACB, 2003. 96 с.
- 4. Отчёт по НИР. Инв. № 02840916932. Парфенов В.И. и др. Разработка конструкций гипсобетонных блоков повышенной долговечности для объектов жилищно-гражданского строительства. Уфимский нефтяной институт. Уфа, 1983. 108 с.